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In this paper, quantum versions of statistical models are constructed. All
aspects of the sysiems can be expiicitly solved. It is possible to give mugnetic
realizations of these models. The most interesting conclusions are: (i) the
state for time going to infinity is approached in an oscillatory manner it the
quantum case; (2) in both classical and quantum cases, the exact description
gives limiting states which remember the initial specifications; and (3) in
these models, the time evolution generally cannot be described, even
approximately, by a master equation.
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and Liouville equations; quantum and classical models; persistent initial
conditions; persistent states.

1. BACKGROUND AND MOTIVATION

A few years ago, a study was published@' in which several models devised
by Kac® were investigated. The purpose of this study was to clarify and
discuss some old and fundamental questions in nonequilibrium c/assical
statistica] mechanics, using the Kac models as examples. The precise point
at issue was the relation between the Liouville equation and the master
equation. In the Liouville-type description, the system is described by a phase-
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space density function p(p,q ..... pvgy . 7) which satisties the Liouville
equation. Macroscopic quantities of physical interest are obtained by some
appropriate averaging. The time evolution is treated according to the precise
dynamics without invoking any probability or statistical notions.

The master equation method describes the system by the master
probability function W(p.q; ..., PvQv » ). The time evolution of the master
function is given in terms of a basic transition probability. This transition
probability simulates the exact dynamics of the system. Thus the time
evolution in the master equation approach does contain stochastic elements.
in contrast to the Liouville method. The general relation between the Liouville
equation and the master equation has been extensively discussed.®-% The
special feature of the models discussed'?” previously is that bor/i the master
equation and the Liouville equation could be solved exacily, so that a direct
comparison between the two treatments could be made. The somewhat
surprising result obtained was that these two methods in general do not give
the same results. To be sure, for special initial states, for limited time intervals.
or for descriptions of limited accuracy, the results-do coincide, but this is not
the general situation. These models therefore demonstrate explicitly that there
exist models (and presumably physical situations) whose time evolution can
not be described by the usual, convenient master equation, but instead must
be described by the Liouville formalism. Although this result is not altogether
unexpected, there are very few explicit examples iliustrating this behavior,

In this paper, a similar discussion of a gunantum mechanical modification
of these models will be presented. Since it is not at all obvious that the results
obtained from a study of such contrived models (either classical or quantum
mechanical) are particularly pertinent to or relevant for the description of
realistic physical systems, it may be of interest to enumerate some of the
reasons for undertaking such an investigation.

(a) It was already noted that the Kac models are some of the very few
systems tor which both the Liouville and master equations can be exactly
and explicitly solved. There does not appear to be any quantum mechanical
system allowing a similar detailed treatment.? The models constructed here
are desigened to provide examples of such systems. Thus it is possible to test
whether the introduction of quantum notions alters the relationship between
the master equation and the Liouville equation, or whether that classical
relationship is effectively unchanged. The relation is altered.

% It should be noted that there are a number of interesting exactly soluble quantum statistic-
al models (compare Lieb'™ and Yang™); but all these models deal with equilibrium
phenomena, while the present study is concerned with-nonequilibrium properties, In a
recent study.'’” the Liouville equation for the XY model was exactly solved, but no
comparison with the master equation was undertaken.
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(b) There are many investigations'*-19-13 which study the circumstances
under which the quantum mechanical master equation (usually called the
Pauli equation) can be obtained from the quantum mechanical Liouville
equation (which is just the equation of motion of the density matrix). In this
reduction, many approximations have to be made. Having exactly soluble
models available allows a concrete discussion of the validity of these
procedures. Thus in these models, it is possible to assess the error made when
the exact description is replaced by a quantum mechanical master or Pauli
equation. In addition, having explicit expressions for the exact solutions of
both the Liouville and master equations enables one to study the relationships
between the solurions as well as those between the equations. This, of course.
is impossible in more realistic circumstances. where only approsimate
solutions of both equations are known. :

(c) It is, of course, well known that the use of probability in classical
physics is quite distinct from its use in quantum mechanics. In particular, a
classical system in which interactions take place with a prescribed probability
is intrinsically different from a quantum system. The models constructed in
this paper demonstrate this difference in an almost dramatic manner. As
such, they provide instructive and transparent examples of the different roles
probability notions play in classical and quantum situations.

(d) The classical Kac models describe highly artificial and contrived
physical situations. They deal with objects (called either balls or particles)
which are capable of just two states. or two colors. The only dynamicul
element introduced is the possibility of a change of color at well-detined.
fixed locations. The underlying physical picture suggesting this model is
a beam of particles all moving in the same direction with the same speed,
which can scatter elastically from a number of fixed obstacles. The obstacles
are so arranged that the particles either continue or reverse their velocities.
The two colors of the objects in the model correspond obviously to the two
directions of the particle velocity. In a more realistic picture. the scattering
{still elastic) could produce velocities in any direction (still with the same
magnitude), which in the model language would correspond to balls capable
of a continuum of colors. Thus the restriction to just two colors is over-
simplified and artificial. However, in a quantum mechanical context, it is
not at all unusual to deal with observables which are capable of just rwo
quantum states. A system of particles of spin % (or isotopic spin 1) is an
obvious example. In fact, any system composed of objects that are capable
of two quantum states, provided with a suitable mechanism which can
produce transitions between these quantum states-at definite locations. is a
perfectly good example of a quantum Kac model. The fact that
all the physically interesting realizations of the Kac models involve
quantum mechanics in an essential manner was one of the main reasons

822/4/2/3-3
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for investigating possible quantum modifications of these models. It
is interesting that even though the original motivation for these models came
from classical physics, the quantum mechanical extensions actually describe
more realistic physical situations.

(e) Another, rather different reason for a restudy of the Kac models
(and possible extensions) is the somewhat unsettled status of nonequilibrium
statistical mechanics. It has been Trepeatedly emphasized™ that the
calculation of experimentally observable entities (such as transport
coeflicients) from the basic equations (such as the Liouville equation) is far
from straightforward. It is now known through the work of Cohen and
Dorfmant® Kawasaki and Oppenheim,”® Sengers,''") and Ernst.!® among
others. that there occur divergences in the density expansion of the transport
coeflicients. These divergences and the related nonanalytic density dependence
follow via a lengthy but well-defined procedure from the Liouville equation.
The same results are obtained if the Kubo formula is used*®:1” for the
calculation of the transport coefficients. Because of the unexpected and
unintuitive character of these results, it would be extremely interesting if one
could construct models which would elucidate some features of this surprising
behavior. Unfortunately, the Kac models do not possess sufficient dynamic
and geometric complexity to exhibit the divergence phenomenon. In fact.
the models discussed previously were even too simple to define entities which
could be considered as analogs of the transport parameters. In the process
of constructing quantum models, it will be necessary to first construct
classical models which possesses more structure than the previous ones.
For these models, one can obtain a nontrivial response to an outside field.
Thus in this case, an appropriate modification of the Kubo formula can be
constructed. One has the possibility of obtaining transport-like parameters
and it is possible to study density-like expansions. Even for these very simple
models, the actual analysis is already involved; one of the main conclusions
is that rather trivial and reasonable appearing assumptions about the initial
state, and especially about the asymptotic time behavior, have an enormous
effect on the existence and character of the expansions of the transport
parameters. Interesting as this is, these aspects of the models are merely
suggestive at this point; the main purpose of this paper is to study, using the
models, the equivalence and relevance (or nonequivalence and lack of
relevance) of the methods used in nonequilibrium quantum statistical
mechanics. In a later study, the significance of models for the divergence
problems will be treated in detail.

The paper is divided into seven sections. Section 2 contains a brief
recapitulation of the notations and results of the classical discussion.
The succeeding section contains a modification of the classical models which
consists in the introduction of a classical stochastic element in the dynamics.
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This modification is useful both as a preliminary to the quantum extension
and as a means to introduce an additional parameter in the problem. It is
this new parameter which later allows the construction of transport quantities.
The appropriate modifications of the model rules, which would vield a
genuine quantum system are developed in a heuristic fashion in section 4.
The main point is the recognition that in terms of the highly schematized
dynamics of the model, the only remaining quantum mechanical feature is
the superposition principle. Section 4 also contains the calculation of the one-
particle (quantum) distribution function. The general formalism is set up
in Section 5. The Liouville and master equations are obtained: contracted
distribution functions and reduced density matrices are defined. It is possible
—in principle, in any case—to obtain exact expression for ¢// the reduced
matrices. An explicit expression will be derived for the two-particie density’
matrix. Section 6 contains a discussion for the results obtained in particular
comparisons of the answers obtained by the different methods. The main
qualitative result is that the differences between the master equation and the
Liouville equation are more pronounced in the quantum discussion than in
the classical model. Using these exact results. it is also possible to investigute
which of the assumption needed®*’ in the general reduction of the Liouville
equation to the master equation are applicable in this case.

It is demonstrated in Section 7 that a more or less realistic physical model
provides an interesting realization of this guantum model. A polarized beam
of particles with spin 1 which are scattered by randoni ferromagnetic
impurities {so they can flip the spin) located in a plane perpendicular to the
plane of polarization is an example of a physical system which is exactly
described by the model rules. Actualty, the precise system consists of a number
of independent beams all polarized in the same way. The “‘magnetic’” example
also allows the introduction of “outside™ magnetic fields in a natural way.
Thus the stage is set for a study of the “response” of this magnetic system
to arbitrary outside fields, and with it. the calculation of the magnetic
transport parameters. The dependence of these parameters on the density
can now be investigated.

The final section contains a number of disconnected comments and
remarks. Applications of the general formalism to other physical systems,
such as the KK meson system, are briefly indicated. The possibility and utility
of the extension of the formalism to systems capable of more than two
" quantum states are discussed. Further generalizations and especially the
possibility of using these models to investigate density and other (u)
expansions are noted. Finally. there is a summary of the main results
and a collection and assessment of the unsolved and parually soived
problems.
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2. CLASSICAL MODELS; BACKGROUND AND COMMENTS

The primitive dynamics embodied in the simple systems studied here
can most conveniently be expressed in the language of a model. Consider a
set of n equidistant points on a circle. A set of # objects (balls, for example)
is placed on the n points. These balls can have nwo colors, black or white.
A set of m fixed points (1 <€ n) on the circle are marked. The fraction of the
marked points is p = m/n <€ 1. During each elementary time interval, all the
balls move one step counterclockwise with the rule that when a ball leares
a marker, it will change its color. If the initial color distribution and some-
thing about the marker distribution are given, the problem is the description
of the time evolution of the color scheme. This is the classical problem
discussed by Dresden.™ Actually, the problem treated there in greatest
detail was a slight modification of the situation described here; instead of
one Kac ring. an ensemble of such rings was considered. Each ring contains
a well-defined set (both in number and location) of markers. The ensemble
average of the number of markers at a given place over the ensemble of rings
is . If the initial color scheme of the ensemble is given, the problem is again
the description of the various aspects of the time evolution of the color
scheme.

This general type of problem can be discussed on a variety of levels,
which may be described as the Newton. Liouville. master. and Boltzmann
level. respectively.?

2.1. The “Newtonian’’ Level

On this level, one deals with well-defined mechanical equations, their
analysis, and consequences, No statistics or probability is used anywhere.
The following notation is used:

5+1 if the point p is unmarked (p = 1,..., 1) o
{

. if the point p is marked
(t) = (- if the ball at p at time ¢ is white 2)
M= if the ball at p at time ¢ is black '

The variables 7 ,(z) change in time; they are the dynamical variables of the
systen; the set of {¢,} characterizes the location and number of interactions,
and it. in a certain sense, represents the Hamiltonian of the system [of

* The model described here is often referred to as “Kac ring,” after its originator.
® This is a convenient and suggestive nomenclature which will be used throughout this

paper.
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Egs. (21) and (23)]. The model rules may be summarized as an equation of
motion for a single object,

77D+1(f + l) = epnu(F) (3)

Equation (3) (**Newton’s equation of motion™) yields the expression for
any n,(7) for all p and ¢ in terms of the initial state as

7711(’) = €p1€p_a 77 Gp——tﬂp—!(o) (4)

From Eq. (4). all quantities referring to a single ring can be calculated: for
example, the number of white balls at any time is

Ny(1) =

[
h
~

n -1 Z 7t} (
p=1

with 7,(¢) determined by Eq. (4).

It is clear from these formulas that all results depend explicitly on the
set {€}, as could be anticipated from Eq. (3). Thus these formulas [Eq. (4)
in particular] provide the solution to the mechanical problem: no statistical
or probability notions or averaging processes are needed or used. {f. however.
the set of {e} is not or only partially given, or if the initial state itself is only
given in a probability sense, statistical methods are needed to obtain results
of physical interest. This is accomplished by representing the actual svstem
by an appropriate ensemble, and this leads to the Liouville level.

2.2. The Liouville Level of Description

The srate of a single Kac ring at a given time 1s completely specified
by the set of # numbers

/"71(f)
2 f N
nty = | 70 (6)
Nal1) /

The n,(¢) values are either +1 or —1. The phase space " of this dynamical

system is thus the space of 2» sequences, each sequence consisting of (=-1)

and (—1), » in all. Consider now an ensemble of Kac rings; then the state

of the ensemble is described by a density function p(z; -** 7, . £): p is a non-

negative function defined on the space of sequences I'; p is normalized to
unity:

2o el ) =1 (7)

Tin

Each member of the ensemble is a Kac ring with a definite number and
a definite Jocation of the markers; however, both may vary from ring to ring.
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The ensemble is specified by the requirement that the probability that there
1s a marker at a given point j shall be p, which is independent of j and .
This expresses in a more precise manner that for an individual ring, the
fraction of the marked points is u. In terms of the e variables, the specification
“of the ensemble is

Prob(e; = —1) = p (8a)
Prob(e; = +1) =1 —p . (8b)
Equations (8a) and (8b) can be combined as
Prob(e) = 4 + (1 — 2u) € (8¢)
From Eqgs. (8a—c), it follows immediately that
Prob(e;e;) = (Prob ¢,)(Prob ;) (8d)-

The ensemble average (or € average) of a quantity O which depends on the €
variables is defined as

(Qye= 3 -+ 3 Proble; -+ €,) Oley = €,) (8e)

En

This represents the result of averaging a physical quantity Q over all
marker positions, The set of markers itself is specified by the formulas (8a)
and (8b). The average of ¢ is given by Eq. (8e) as ‘

e =3 eProble) = 1 — 2 {81)

The average of products is obtained by combining Eqgs. (8f) and (8d), -
<€1 s €9 5eeey es>e = (1 - 21“’)8 (Sg)

The motion of the balls on a given ring is still described by Eq. (3): this
yields for the time evolution of the ensemble density function

P(""}l ceees Ny s ! —T_ ]) = P(El"')z > €37)3 4oees €171 1‘) (9)

Equation (9) is the Liouville equation for the model. As in ordinary statistical
mechanics, it is useful to introduce conracteddistribution functions defined by*

fj(@, t)= Z 'ZP("h e M T Kaeesy 77,17[) (IDd)
FHa Bty =3 Y pleemy = dpes i = By 1) (10b)

® Strictly speaking, one should write fil(x, 1), fi(s, B, 1), indicating the one-, two-.....
particle character of these functions. The notation used should hopefully be clear enough.
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Note that f/(x, 1) and f*(«, B, t) are normalized by Eq. (7).

SPmty=1, Y fif(x,Bt)=1 (10c)

{In (10a), one does nor sum over 7; ; it has a specified value x; in (10b), one
does not sum over 7, and 7, , etc.]

These contracted distribution functions satisfy equations® which can be
obtained by combining (9) and (10):

[, t) = fi ¥ e, t — 1) (Ila)
FMe B, 1) = fr1 e 6Bl — 1) (11b)

Equations (9) and (11) show explicitly that the time evoiution of the
system is determined by the set {¢}; no stochastic elements are involved in
the dynamical description of the system. This can also be seen from the
solutions of Egs. (9) and (11). Suppose that p(n, 0), the initial density function.
Is given in terms of a set of coefficients b as

PN, O) = g(n) = (1/’27'} T Z bi;77/.' - z Z”’,nz"//:-’/« - (i
3

[
Then the solution becomes
pln. 1) = (1/2") - 2 br€r€ry €M
-

+ Z bra€r €€ T Erp M Mis T (13)
P

fj(»“-.v f) = % - zli—llbi—te./——b € (14)

fj"'('V.- B, t) = 1 - 2n’2(bj—t€,—t €N T Diet€my /8
- bj—t,/;—ty'ﬁej—l €€y € (13)

These formulas exhibit the dependence of the various distribution
functions on the initial configuration (the #’s) and the dynamics (the €'s).
If these are given, there just remains the analysis of the expressions (13)-(15).
In many actual situations, however, the €’s (or the b's) are not known as such.
but instead, a probability distribution of these variables is given. For example.
the probability distribution (8) of the € variables corresponds to the physical
situation where markers are distributed over a Kac ring with &/ marker
configurations equally likely. so that the average number of markers is un.

* The functions p, /7, 7%, etc. will be referred 10 as the *““Liouviile hierarchy.”
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To obtain physical results for that case. one must average the expressions
for p. f/, f7%,... over all marker configurations. Defining as before

Q. =Y Y Proble; - ¢) Qle; - €,) (16)

€ €n

one finds®
p(n, 1) = (1/2%) + Z bi(l — 2u) myy
. x

Y bl = 2 gy (7
JA
) CFa 1, =} + 21 b (1 — 2 (18)
\fjk(a: B’ [)/}e = }L _T_‘er—;Z[(l - 2[-"')t (abj—t - lgbk-—l)
' = (1= 290 by B - (19)
A 1) = {21, j—k =t . 20)

(2(j — k), j—k <t

These results no longer depend on the e variables; they represent aocruges
over all the marker configurations of the exact dynamics of the system. It is
through the e-averaging process that nonmechanical or stochastic elements
enter the description. For many physical situations. (for example, in impurity
scattering. where the location of the impurites is not known) such averaged
quantities are just the ones needed for the physical description.

To emphasize further the mechanical nature of the Liouville equation.
it is instructive to introduce the Hamiltonian matrix H which governs the
dynamics. Define the matrix H by

ST
€, v

It is easy to check that A has the property

AY
7 €172 /"7 €1€> 't €My
1 1
: €273 : €3€3 "7 €111 n
H: - : JH — : (22)
Nn ’ M )
5717]1 €€y 07 5,,_17’],

& See especially Dresden'?’ for more details.
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Thus H,acting on a state 5, vields, by Egs. (22)and (9). the state from which that
state came an elementary time earlier. As written. / propagates the system
back in time. The (anti) time-evolution operator H depends exclusively on
the € variables, it is independent of the time and the initial conditions. Both
these features are typical of mechanical time-evolution operators. In terms
of H, the solution of the Liouville equation can be written in the compact
form

p(n, 1) = p((H'n), 0) (23)

This gives the form (13) immediately.
H has the further properties that

HHT = HTH = 1 (24a)
Hm =] (24b)
Here, A7 is the transpose of H; since the €'s are real, (24a) expresses the

unitarity of A. Equation (24b) expresses the essential periodicity-of the system,
which can be observed directly from (22) and the fact that

€1€2 7T €4€40y T €y T € U0 €4

Since H is unitary, its eigenvalues have absolute value I: from (24b). it
follows further that the eigenvalues of H are ¢"™ j = 0....1 — 1. Since
A is unitary. it can be diagonalized by a unitary matrix U so that

UHU =D (25)

with D diagonal, with diagonal elements (e7%//*). U depends only on {e! and n.
It follows from (25) that the matrix A which occurs in-the Liouville equation
satisfies

Ht = U-1DU (26a)
Consequently, acting on a state, it vields
Z ,yljem'jt/n
j
(Hin) = . (26b)
Z ,ym_.€rrijt/n

Here, the y;; depend on the initial condition and the set {e}. but no7 on the
time. The complete time dependence of (H') is explicitly exhibited in (26b).
The time dependence of p of proceeds via an analysis of (23), while the time
dependence of <{p), requires the ensemble average.
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2.3. The Master Level

Since the quantities of physical interest are usually ensemble averages.
there is a considerable interest in setting up time-evolution equations which
incorporate the probability aspects of the problem directly in the dynamics.
The hope is that such equations will be simpler to solve and yet provide a
reasonably accurate (if not exact) description of the averaged quantities ol
physical interest, thus avoiding the necessity of solving the exact equations
and averaging their solutions. Such kinetic or master equations play a
significant role in all of statistical mechanics: the Boltzmann equation is
perhaps the best-known example.

In this model, the master equation requires the construction of a
transition probability -P(8 1), which gives the probability that, given that
the system is in state 8, it will be in state n one elementary time interval later.
With n and & fixed and given vectors, such a transition requires that
Mo = €;8; Or ¢; = &;n;_; . For a given ring, i.e., a given set of e variables.
this relation is either true or false. If, however. the {¢} are considered as
random variables. the probability that ¢; = 8,4, 1s given by [see Eq. (8¢)]

1

Prob(e; = 6;m,14) = 3 + 31 — 2u) 6,9, (27

Therefore the transition probability P(8 , 1) is

T

P8 ) =TT 41— (1 —2u) 8. 4] (2%

J=l
The master equation is defined by

et +1)=> P(8 n)q(8, ¢) (29)
3

[t does not describe the time evolution of a single system. but it gives
a stochastic representation of a time evolution in which the model rules
(e, = &,m;_,) are satisfied in some average sense. Tt is r/iis feature which gives
rise to the expectation that as long as one is interested in ensemble averages
(such as an average over.the markers), the master equation will give an
adequate description. It is an important aspect of the present studies to
investigate to what extent these expectations are valid.

Contracted distributions obtained from ¢ are defined as before

Fia 1)y =3 Z s m = e 1) {30a)

1 i

- FiYx, Bt) = Z Z PN seees W = %gee, N = Boey M, 1) (30b)

LN Ny
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Equations (29) and (30) yield equations for F, which are the counterpart-of
(11a),

Fita, 1) = § = 31 — 2u) & ¥ nFYn, t — 1) (31a)
n

Fha Bt) = 4 (1 = 2m)a T yF iyt — 1)

+ﬂ2yﬂqm1-n;

Y

+ 31 = 2p)PafB Yy yy Fl Yy, — 1) (31b)
The Liouville hierarchy (9) and (10) could be rigorously solved with the initial
condition p(n, 0) = g(x); the master equation hierarchy can also be exactly
solved. Using the same initial condition ¢(n, 0) = g(n) with g given by (12)
yields

<P(7l, 1) =2"+ (1 — Zﬂ)t Z bk"’]k—w + (1 — 2,“«)2{ Z bl‘z")/ﬁ»r’];" {32a)
A P

Fila, 1) =

[0

= 277h, (1 — 2u) (32b)

Fila, B,1) = 1 — 3(1 — 2u)' 2(ab;, -+~ Bby_y)
(1 — 2p) by B2 (32¢)

As was to be expected, the solutions of the master hierarchy do not depend
on the e variables. The parameter p and the initial data {b} determine the
solutions uniquely.

It is again possible to give a matrix transcription of the master equation,
analogous to the matrix transcription (23) of the Liouville equation. For
this purpose, consider the set of values @, which @(8.r) assumes when
8§ = 8;,8,..... 8, runs through its allowed values. Thus ¢, (7} is one of 2"
components, p corresponding to a specific set of values of 5, -+ 6, . Then
P(8 i n) becomes a 27 » 27 matrix and (29) can be written as

Po(1) = Z @t — 1) Py, (33a)

q

or using an obvious matrix product notation,

@u(1) = (PNqy 94(0) (33b)

The matrix P is Hermitian. It is possible to find the eigenvalues and the
matrix that diagonalizes P. This information combined with (33b) vields an
alternate derivation of (32a).
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The master hierarchy, in particular Eq. (31a) for F,, can be given a
direct kinetic interpretation. Using the fact that Fi(y.r) - F(—n.1) = |
and n* = 1, Eq. (31a) can be put in the form

Fi(a, ) = p 4 (1 — 20) F o, 1 — 1) 34)

This is the form which can immiediately be understood as a gain-loss equation.
The F!level of description in the master hierarchy will be called the Boltzmann
level. On this level, the dynamics is described in probability terms; thus the
probability for a color change at a point is the same as the probability of
finding a marker at that point. This probability is u, the fraction of the marked
points. Hence one can write immdediately

Fila, 1) = (1 = p) Fiio, 1 — 1) — u(l — Fi(x, t — 1)) (35)

Equation (33) states that the color state « atj at 7 can originate from a color
state x atj — | at r — 1, if there is no marker atj — 1. or from a color state
—«xatj— 1 at7— | coupled with the presence of a marker at j — 1. This
is just the usual kinetic argument for a gain-loss equation. 1t is clear thut (35
is the same as (34).

A similar kinetic interpretation can be given for (31b).

2.4, Comparison

The formulas given allow a direct comparison oi the results of the two
methods. For example, (18) and (32b) show that

(Fila 1)) = Fila, 1) (362)
<fjk(°‘= ﬁ? I)_/ e T F'H'v(l: ﬁa T) (36b)

On the /1 level, the time dependence of the ensemble average of the exact
dynamics i5 the same as the time dependence produced by the average
dynamics. However. this equality no longer holds rigorously for the more
detailed descriptions of the system as given by f? and F?, respectively.
However, even on the f* level, there are time intervals and special initial
configurations for which the two descriptions are approximately the same.”
Thus one can state precisely that for this model, the € or ensemble average
of f1 is exactly the same as the stochastic dynamics of the master equation
for F*; for higher distributions, the exact identity no longer holds. but there
is a well-defined approximate relationship.

® See Reference | for a more detailed comparison. The most important feature is that,
because of the 4 occurring in < ;%> [compare Egs. (19) and (20)], f* . and F* remain
unequal even if # — =0,
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In this model (as in statistical mechanics generally). it is possible to
define other averages which satisfy different equations. For example, the
local color average at a point at time 7 is

7(t) = 3 nfi(n, 1) (37)
This quantity is analogous to the local velocity in kinetic theory:

u(x, 1) = J dBrvf(x.v, 1)
It is easy to show from (37) and (1la) that 7; satisfies the mechanical
equations of motion {3). Take the local average of (11a),

74t) = Z nfi e t — 1) = €, 7,40 — 1) (38a)

This is the Newton equation (3). Equation (38a) can be solved directly [or
alternately, (37) can be used in conjunction with (14)] to give the solution

) = 20 ey v € (38b)

It 1s interesting to note that the local average (37) still possesses the strict
periodicity 7;(t+ - 2n) = 7,(¢), as can be seen from (38b). This, of course.
must be true since the local averages are described by the sameequations as
the original reversible dynamics. Onliyv after taking the ensemble average
(e average) does the usual thermodynamic approach to equilibrium appear;
from (38b) and (8g), there follows

A e = 20, (1 — 2p)' (39)

It is also possible to define color correlation functions using higher distri-
bution functions: for example, :

B(1) = Z Z Bk, B (40a)
a B

From the known solutions, these can be analyzed; it is easy to check that in
general they do not factor:

o # ‘;jBJ; {40b)

Although it is not essential for the following, it is interesting to observe
that it is also possible to define a imechanical time average

ni0)ye = /1) Y 97 (41a)

7=0
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It is easy to show [using Eq. (3)] that this time average satisfies
M = [0+ D] e{n = [0 = D] n;(0) (410

This is not identical with the mechanical equation; if, however, 7 > 1 (but
still n > 1), one sees that the time average satisfies the mechanical equation
approximately; hence in the limit that » — ¢, r — co afterwards, the time
average satisfies the equation

iz e ~ €507 (41c)

which is the same as the equation the color average satisfies. Hence in an
approximate (well-defined!) sense, <{n;., = 7,(1).

3. A CLASSICAL MODEL WITH EXPLICIT PROBABILITIES™

The model described in Section 2 was a strictly mechanical, deterministic
model; probability elements were introduced only as a convenient means to
describe the model. It is possible. and for the later discussion of guantum
models necessary, to study classical models which explicitly contain
probability notions. In the context of the models discussed in Section 2.
the model rules are changed to the effect that if a ball leaves a marker (/). it
will change color with probability A;. If a ball leaves an unmarked place.
it will certainly not change color. (It will remain unchanged with probability
one.) Thus the model now has a mixed character; it possesses a well-detined
mechanics, described by the set {e}, and it contains stochastic elements
through the stipulation that the change in the dynamical variables is described
in a probability sense only. There are now two levels of description possible:
the Liouville level,in which the {e} variables are rigorously described, with the
outcome of a color change described by the probabilities A; . and the maoster
level, which treats both the collision process and the marker configurations
on a probability basis. Since the underlying dynamics is only specified in
a probaljlity sense, no Newtonian level description is possible. The muin
result of this section is that even in this model, the {e}-averaged Liouville
hierarchy is nor identical with the master function, although there is less
difference than in the previous case. Specifically. the two solutions do
approach each other for long times.

* Anyone interested solely in the quantum models could in principle skip this section.
However, its content is essential for the comparisons to be carried out in Sections 6
and 7, and is probably generally instructive. In this section, locations are denoted by
p = 1., n, (as before), but also by j, & (Latin letters), and color variables are y or \, 2
(Greek letters).
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A separate reason for studying this model is that through the
introduction of the position-dependent (j-dependent) probabilities A;,
the possibility of a stochastic model for a spatially inhomogeneous Boltzmann
-equation is opened up.. There are at the present time no stochastic models
known which reproduce a Boltzmann-type equation with outside forces and
streaming terms. Writing A; = A, - pr; , where A, is independent of j, p is a
small paremeter, and v; depends on j, it can be shown that the introduction
of an outside field (represented by p) can produce a spatial inhomogeneity
in the system. In this manner, one may hope to simulate the effect of externai
fields.

3.1. The Liouville Level' (f")

The system will be described by the probability functons fi(x, r).
S#*(a, B, 1); no higher distribution functions need be considered here. The
normalizations are

Y fity =1 (42a)

Y B = fE (42b)

l
x

Equation (42b) emphasizes that /7 is the joinr probability of finding the object
at j of color a and the object at & of color # at time . The mode! rules are
summarized in the equation

Fa e+ 1) = 31 + €) i 1)
+ 31— )l — A fo(x )= Nifil—xn] (43

Since the color variables have only the values —1 and 1, Eq. (43a) indicates
the ways in which a color state x at £ +— | and r 1 can be obtained from
a state x at j at ¢ (meaning no color change), or from a state —x at j at 7
{showing that a change has taken place). Using fi(a,t) — fi(—x 1) = 1.
Eq. (43a) assumes the form

o, t + 1) = fla, DT — A1 — €)] — IA(L — ¢) (43b)

One should expect that in the special case that A; = A = 1 for all j. (43b)
should reduce to the equation of motion for the f; function of the previous
section Eq. {11a). One obtains for A = 1, '

fi o, t = 1) = ¢;fi(x. 1) + 31 —¢) (430)

1 All the results in this and the next section can be straightforwardly verified by elementary
means just by showing that the equations written express the model rules correctly.
On occasion, this verification becomes quite involved: even so, the proofs have merely
been indicated; the omitted parts just take patience.
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and [from Eq. (11a)]
S o1 1) = fie;x, 1)

These two equations do have the same content, since one can establish the
identity
fllejo, 1) = €;fa, 1) + 3(1 — €)) (44)

[Equation (44) d=pends only on the fact that x and ¢; assume just the values
—+1 and the normalization of f. Thus in contrast to the equation of motion
(43¢) and (11a), which only hold for A = 1, Eq. (44) is a valid identity for
any (one-particle) distribution function.] Returning to the basic equation

(43b). it is very suggestive to introduce )

e =1—2M1-—¢) (45)

In terms of ¢, the distribution function fi(«. + = 1) for the stochastic model!
satisfies!?
Yoot = 1) = €/'fi(x. 1)~ Ml — €1 (4633

This equation can be iterated immediately to vield for all real €,

T e;_,f"'"(»\, 0) (46bh)

flany =13 =i, e —e,

The initial condition p(x. 0) as given by Eq. (12) vields the inital conditon
for 7+
fi(a, Q) = § + 2n-15p, (46¢)

This. used in (46a). gives the explicit solution for fas

ff(x., {) = 1_) < 2']_‘16{ R S (16d)

J—1 PRt A

It is important to observe that although this solution contains the {e} variables
explicitly, the distribution function 1s no longer periodic. in contrasi to the
previous model [see Egs. (14) and (24b)]. Formally, this lack of periodicity
comes from the fact that this solution contains € with (¢;)? = 1, while the
previous solutions contained e with €2 = 1. Physically, the continued
operation of a random element in the dynamics precludes an exact periodicity
of the system. -

It is again appropriate to average over all the marker positions. Using

12 This equation for f* {with A = 1) has the same structure as the equation for f* with A == |
[Eq. (43b)]. Just ¢; is replaced by ¢;".
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the definition (45) for €, and the properties of the {¢} ensemble given by
Eqs. (8a)-(8g), it is straightforward to establish that

(egjf 3 =1— 2)\;;1. . . (47a)
Cefer’> = {&Der’>, j#k (47b)
APy =1 — 4/\1!1«(1 —A) (47¢)

Equation (47c) represents the main difference with the previous case, where
€2 = 1; hence (¢ = 1. With these formulas. the € averaging can easily
be carried out. The result is

Ao te =

[T

+ 21, [T (1= 2ud,c) (482)
=1

(Filon e =3+ 2ol — ), A= A (48b)

-Dfps

The second form (48b) refers to a model where all the probabilities A are
the same. The e-averaged -disiribunion function for the stochastic model
has exactly the same structure as the e-averaged mechanical model [see
Eq. (18)]. It just appears as if the marker density x has been decreased by
a factor A (the probability of a change) to yield an effective marker density
wA. This is intuitively reasonable (in fact. pretty obvious).

It is, however, amusing to see how the j dependence of the probubility
can simulate a location- (j-) dependent color. Suppose A, = 1 — pr;,
where p is small; assume further that initially all balls have the same color.
thus fi{a = 1, 0) = 1; this gives b; = ()" [from Eq. (46d}]. Expanding the
product in (48a) and keeping just terms linear in p gives

.
ot~ 34 da (= 200+ (1= 20 20 3 1 ] o)
For long times {f}. approaches %, independent of j. The *average™ color®®
at j computed from (49a) and (37) is
t
&) = [(1 — 2w (1= 2 200 ¥ r,._,_] (49b)
=1
This relation shows that for long times, the average color approaches 0.

(If « = 1 is white and « = —1 is black, the value « = 0 would be the

13 Strictly speaking, the variable used in (49a) is the local average of the ensemble average,
{ooe = LealfHa, 1)) . The simplified notation should not cause too much confusion.

822/4/2[3-4
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average, presumably grey!) However, (49b) also shows that for finite times, the
average color varies from place to place; for example,

at) — &) = 2pp(l — 20" Mvjy — tie) (49¢)

This difference clearly goes to zero for large t; however, in the model where
p = 0, this difference vanishes for all t. Thus the introduction of a j-dependent
probability A, causes the average local color to become dependent on position.

3.2. The Liouville Level (f?)

It is again fairly straightforward to derive an equation for the time
variation of f#*(a, 8, r). It is just necessary to enumerate the circumstances
which can give rise to a particular color configuration at particular locations.
The result is'*

FrrR o, Byt - 1) = Ajfi™(e, B, 1) + Bipfi(a, t) - By fi(a, 1) X Cy,

. (50)

Ap = AAgese — A (L — A
+ Al — A) + (1 — A — Ay (51a)
By, = H—MAwgrer + €A + a(Ad — A+ (Ar — AA0)]
' (51b)
CJ':': = 1/\1’\k(1 — E}')U - EI:) (51‘-)

It can indeed be checked that (50)-(5ic) incorporate all the model rules.
If A; = A = 1, the /™ equation for the previous case {without stochastic
elements) should be recovered. One finds from (50) that it reduces to

FIE s Bt = 1) = e M B, 1) + e, — e FI(d 1) .
— e — e fHB ) I — )l — &), A=1)
(52a)

This should be compared with Eq. (11b), which describes this same situation:
FrEaa B 1) = fiex e r), A =1
That these equations have the same content follows from the identiry

fﬂg(ejl- ekﬁs t) = Ejelk‘fjk(aﬂ :83 I) + %61(1 - ek)fj(&: T)
+ 3 — ) efH (B 1)+ Hl — )1 — €k) (52b)

1+ No summation of any kind is implied by indices occurring twice.
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Equation (52b) again follows, as did (44). for all normalized probability
functions, from the assumed properties of-x. 3, e. It is both interesting and
important to observe that the introduction of the ¢, variables allows the
two-particle equation (50) to be written in the form

PR, By 1+ 1) = 6 fHa B, 1) + de/(1 — &) Fila, 1)
S =B+ H— ) — ) (53)

‘The structure of (53), the equation for the two-particle distribution function
with general A; , is identical with that of Eq. (52a) for the two-particle distri-
bution function with A; = A = 1. just the ¢; in the (A = 1) equation must be
replaced by €, in A; equation.

This procedure can be generalized to all distribution functions
ff3,..., p. First, generalizations of the identities (44) and (52b) are needed
for plema , €M 5..., €,m1 , t). These identities have the character that the €'s
act not on the independent variables. but on the functions p. /1. etc.. as in
(44) and (52b). In this way, one obtains an expansion of p(n, - 7, .1),
fi(n,1). The Liouville equation is obtained by equating p(s, -+ %, .7 - 1)
10 the expansion with all the €, variables replaced by €/ as in (43),

Since the solution of the Liouville hierarchy (9) and (11) was obtained
by iteration in which no use was made of the special properties of the «
variables, it follows that the present hierarchy (46a) and (53) can be solved
in the identical manner. In fact. the Liouville hierarchy for arbitrary A. can
be immediately and exactly solved by replacing ¢; in the former solutions

J
by €,’. Thus the solution of (53) with initial condition (46¢) derived from (12).

Fitx.0) = § — 21ab,

“and
FHe, B O) = § + 202 + b, + bys0f)
is just given by
S, Bty = 1+ 2”‘2(b)._§s;._1 e;_l,\ b, e e,’._ulﬁ)
T2l € B (34)
It is again straightforward to obtain the e average of f/*(a, B, 1). The terms
linear in « and B, will involve an average of ¢ factors €', and will contribute.
by (47b), (1 — 2Ap)t (if all A; = A). The term in «8 will give a result that is
dependent on the overlap of the chains of €'s. One finds. using (47a—c).

e e e = (1= 2uA i 1< j—k - (53a)
<€}—z e;-le;c—i E;,;_-Q = (] — z}iA)zu—m 1 — 4:“/\(] — Nt

if r>j—k  (55b)



132 Max Dresden and Frank Feiock

Thus for times 1 > j — k, one obtains

e By D> = § o+ 2721 — )by, + Bi)
+ 2721 — w)*RaB[] — 4ud(1 — Dt (56)

For times ¢ <C j — k, the last term is given by (55a). It is interesting to note
if A = 1, the case of no overlap, Eq. (55a) is only slightly altered; however.
for A = 1, the time dependence in the overlap terms disappears, they just
become (1 — 2p)2Y—»_ It is this persistence in the overlap terms which spoils
the agreement between the master equation and the Liouville equation even
for long times in the A = 1 case. If, however, A == 1, the overlap terms
depend on time; since [I — 4uA(1 — A)] is less than one, they becon‘u less
Important as 7 increases.

The same features persist if the A variables differ from point to point.
Characteristically. an average such as (55a) becomes a product

H (1 - 2/"‘)\)—-)(1 - ZFLAk—T)
The complete hierarchy is explicitly soluble and ali the ¢ avefages can be
performed.

3.3. The Master Level, Comparison

To obtain the master equation, it is necessary to construct the transition
operator, P(8 | n) similar to (28) which takes the altered model rules into
account. A color &; at location j an elementary time later becomes a color
m;y at j 4+ 1. If no color change has taken place, 8m,., = —1. while
6m;.; = —1if a color change has occurred. The master description dynamics
assigns a probability uA; to a color change and a probability 1 — ud. 10
no change.” Therefore

P(S, — 7)) = M1 —~ 81”7)’-—1) pd; = = 0m (1 — wd)
= 31+ 8mua(l — 2u0)) - (57a)
Consequently the transition operator becomes '
n
P& |n) = H f[l + 17794—1(1 [.LA]')] {(57b)

=1

It differs from (28) only through the replacement of u by pA. The master
equation is [P is given by (57b)]

e, 1+ 1) =Y P(sn) B, 1) (57¢)
o
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It appears as if the decrease in effectiveness in producing trausitions
through the introduction of the probabilities A; is totally accounted for in P
by a decrease in the effective marker density. Since the master level gives
an overall “averaged” description of the dynamics, it is to be expected that
the introduction of the A; could be so expressed. Formally, the master
hierarchy is exactly the same as that obtained before; just u should be
replaced by Au, and powers (1 — 2u)t by products of 7 factors. The results for
Fiand F/* are (as always, with the same initial conditions)

f
Fi(x,t) = 3+ 2710 [T (1 — 2\ ) . (58a)

]
t

L D2 {gxb}-_t H (1 — 2AJ-_7},L)

Fjl'v(l, /3, t) =

e

1
+ Bbk—t H (1 - 2)\/;-7”)

=]
: \ 1 “c
— af8b;, I_i (L — 24, il — 2/\,1_,_;4')J {38b)
=1
The equation for F/(x, r) again has a direct kinetic interpretation as a guin-
Joss equation. Using the familiar arguments. one writes

Folaot = 1) = Fila. 0 — w) - Fla, oypll — A)
11— Fi(x, D] A
= pA -+ (1 — 2ud) Fi(x, 1) (58¢)

Equation (58¢) enumerates the ways in which the color x can be produced at
location j - 1 at time ¢ -~ 1. and assigns them their appropriate probabilities.
Clearly. (58¢c) is the same as (34) with x repiaced by uA. Equation (38¢) can
also be obtained by summing (57¢) over ail n, except n; , which Is equal to .

The comparison between the master and Liouville hierarchies can just
be read off from (58a), (58b). and (48a) and (55a) (55b). and (36). The resuits
are

fiant)re = Fila, 1) | (59a)
e B0 = Fi(x B0, 1 5j—k (595)
Mo Bote = Fioefon. =) —k (39)

The difference noted in (39¢) originates in the overlap terms. Although
the two solutions are nof equal for any finite time 1 > j — k, the terms which
are different individually go to zero as r becomes large. This is in sharp
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contrast to the mechanistic model, where the corresponding terms are
(I — 2u)?-# (in the Liouville equation) and (1 — 2u)* (in the Master
description). Here, one term becomes small as 7 becomes large. while the other
remains constant. Thus the Master equation in the stochastic model gives tor
long times a better approximiation to the Liouville equation than in the
mechanistic model. Even so, it is a quantitative question (depending on r,
b, , A, u, and the accuracy needed) to decide whether the use of the Master
solution is legitimate in any particular case, even in the stochastic model.

4, THE QUANTUM MODEL; A HEURISTIC DISCUSSION

4.1. The Model

In ordinary quantum theory, the state of the system at time 1 is described
by the state'vector, (). It is related to the state vector at time 0 by a unitary
time-evolution operator

[y = e ] (0). (60a)

The Hamiltonian H, contains the dynamics of the system. The probability H
that at time ¢ the quantum system is in a state y (say an eigenstate of some
operator) is the square of an amplitude a(#).

Wiy= "y )= aln)? {60k

These well-known notions will now be applied to the present model. To
construct such a quantum mechanical version of the models. it is first
necessary to describe the state of a single object.’® A'state is described by
a vector ' p,n, 1, which gives information about the location (p) and color
(n) at time 7. Since the model rigidly prescribes the motion of the balls along
the ring, it is only necessary to stipulate the manner in which the color
changes can occur. The color scheme and the position can be described
independently of each other. Formally, (p.n> = i p 2 7 . a state o' a
single object can be written as a direct product of a state | p> in R, , giving
the position, and a state | n:, giving information about the color in C, .
where R, is a real n-dimensional space, C, is a two-dimensional complex
vector space, and @ denotes the direct (tensor) product. The ~color” space
C, is spanned by the color eigenvectors | n~>, | 77>, corresponding to color
eigenstates. An obvious representation of these states is given by

=) =) (6la)

15 The genuine generalization to the many-particle system will be given in Section 5.
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One could introduce a color operator Q which has as only two eigenstates,
i 77> with eigenvalue +1, and | =) with eigenvalue —1. It clearly would
have the matrix representation

1 0
2= _1)
A general state in C, , i.e., a general superposition of color eigenstates, is
iPan>=C1TP:7)'>+C2}P,"7—> (61b)
GEFIGE=1 (61c)

In such a state, the probability that a color measurement at p would give
white is | C; 12 = [{y* | p, 7)|? [compare (60b)]; it would give black with
probability | C, 2 = {9~ | p, P[%

The distinguishing quantum feature is precisely that an object can be
in a mixed color state such as (61b). In a classical description, a ball is either
white or black; one can describe the changes from one to another in a
probability manner as was done in Section 3, but the state itself refers to a
definite color. In quantum theory, by contrast, the state itsef contains both
color possibilities.

The time-evolution operator for the model must be so chosen that
when a ball leaves an unmarked point, its color state is not changed. However,
when -a ball leaves a marked point, its color state must undergo a change
described by an operator which does not have the color states as gigenstates
or which is not diagonal in the color representation. In that case, even a pure
color state becomes a superposition of color states, which is the essential
(in fact only) quantum theoretical ingredient in the model. Thus the quantum
modification of the mode! described in Section 3 must have the property that
if a ball in a color eigenstare leaves a marked point p, it will change color with
probability A, and will not change with probability (1 — A,).*¢ (It should be
pointed out that if a ball leaving a marker would cerrainly change color,
-a pure color state would necessarily evolve into a different, but again pure
state. The only characteristic quantum mechanical superposition of states
would then result from the initial mixture and not from the dynamics. For
that reason, it was felt preferable to construct the model so that the mixing
was an intrinsic feature; this demands the introduction of A. This, of course,
has the consequence that the quantum model should properly be compared
with a classical model of the same character, thus containing the same A.
This was the main reason for the Discussion of section 3.)

1 Most of the formulas will be written for A independent of p. The modifications introduced
by the p dependence are usually straightforward, and only occasionally noted.
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4.2. The Schrédinger Equation'’

To construct the operatdor which describes this time evolution, it is best
to start from E, : ’
E, =31+ e)l+ il —e€)S, (62)

E, must be thought of as a 2 X 2 matrix, acting in the color subspace. If
p is not marked, E, clearly is the unit matrix. The model rules just described
require that S, have the properties

S lm > = el — W2 g7 > 4+ eBA2 g7 (63a)
S im0 = e AR i e — AR oy (63b)

Equation (61b), combined with (63a), shows that S, acting on a color state
(say; white) at p yields a state at p - 1 having a probability I — A of being
white and a probability A of being black, which is just what the model requires.
In the color representation, the matrix S, assumes the form
.eia(l — A)lﬂ eivAl-2 )

Sp= (\ez's)g,z eis(] — M2

(63¢)
The phases «, £, v, and & are real constants, independent of the color. 1f one
requires that the time-evolution operator is unitary (as is customary in
quantum mechanics), and fyrther, that the matrix S, becomes the wnit matrix
as A — 0, just one of the phases remains free:

<(1 — D2 givpire )

___e-i'yAl 2 (1 — A)];g (63d)

S, =
The phase y will be taken zero.!® The evolution of the system is now sum-
marized by the equation for the state vectors:

| Mol -+ 1)) = Ep [ (1) (64a)

This is the analog of the Schrddinger equation; it can eas#y be checked that
the requirements of the model are all satisfied. Equation (64a) is a typical
quantum mechanical equation, if the set {¢} and A are given (i.e., the
Hamiltonian is given); it contains probability notions precisely to the extent
that quantum mechanics always does; but there are no other stochastic or
statistical efements contained in the description.

17 Compare Section 2.1.

8 In Section 7, the physical significance of the phase y will be further discussed. For the
present, it is sufficient to note that .S as given by (63d) with y = 0 gives a dynamics in
harmony with the required model rules, although these rules do not determine S uniquely.
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It is simple to solve the Schriédinger equation by interation; Eq. (64a)
gives immediately

18 = Epy - Epy | 75 dO)) (64b)

The product of the E operators plays the role of the exponential operator
in (60a).

4.3. An Example

To illustrate the charactéristic differences encountered in this quantum
model, it is interesting to discuss a specific physical situation. Assume that
at time ¢ = 0, all objects are in the same pure color state,

MO =1 = (o). p=Lwn (63)

What is wanted is the probability that at time ¢, ball p is white (i.e.. is in the
same color state). The answer to this problem on the classical Liouville
level is for the boundary conditions obtained from (46b) and (48b) as

P =3+ de e, (66a)
Il e =1 4+ 1 — 2wy (66b)

The methoed to be followed in the guantum case is clear enough in principle.
One clearly can compute 7,(r) from (64b) with the boundary condition (65).
Then the desired probability is, by (60b),

W) = | ay(t) = 1<% | mu()) )2 | (67)

It is also clear that the expression for the probability will explicity depend
on € variables, which will enter W, through 7 ,(r). Substituting the expression
(62) for E, in (64b), one obtains for | 5,(r)> a swn of terms of the type

G (I + &)+ 6pg) - (1 + €)1 — €5ra)

1
= ) Sperna Syt () (63)
These sums tend to get somewhat complicated; however, there are two simpli-
fying features. One is that the e variables occur in products with no e variable
occurring twice, multiplying the S matrices. The other is that the matrices

S, = ((1 — /\1))1/2 )\;/2 )

) . (692)
I (S R
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can all be diagonalized by the same unitary matrix!%;

R B

U=/va, ) (69b)
_ _ (A

S,= UD,U-, D, = ( /1*) (69¢)

A, = (1 = A2 4 A2 - (69d)

The fact that all the S matrices can be diagonalized by the same U allows
a very simple reduction of the products of the S matrices and the vector

I
(o)
occurring in (68) to a simple vector. To obtain W, , it is first necessary to
take the scalar product of that vector with (1, 0). It is here that the fact that

that the e variables factor becomes very important. One finds. for example,
for t = 2,

a,(2) = {97 i, (2P
= HU + 600 = e,q) + 31 — €, )1 = e, )1 — A7)
+ Hl + ) — o)A + 4%) A
+ 1 = )1 — €, )[4 + (A*]) (70a)

Finally. this expression has to be squared to obtain W {2). Some simpli-
" fications occur in this process. Since €2 = 1, all mixed products in this square
disappear; they always contain terms such as (1 — e,_.}{1 — ¢,_,), which
vanish. For W (t). one obtains polynomials of degree 2r in /I and A*. with
coefficients which depend on e. This is in general as far as the analysis can be
carried out. The result is the answer to the quantum mechanical problem
posed.

As an example of the type of expression obtained, the specific result
for W ,(2) is: :

W2 = H = e, + €p1) + (I — e, )1 + €, (1 — A)
L1+ epual(l — €, (1 — A) -+ (1 — €, 0)(1 — €,4(1 — 24)%)}
(70b)

The structure of W,(r) is an obvious generalization of (70b). This formula
1s the quantum counterpart of (66a) evalutated for r = 2:

A= =3+l =Ml — )1 =Xl —¢,.)]  (700)

¥ The formulas as written hold in the general case where A depends on p. The p is omitted
again after formula (69d).
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It can be seen immediately that these results have a similar structure
both are quadratic functions of A with e-dependent coefficients. The
coefficients, however, are different. These differences persist for all 1.

4.4. The e-Averaging Process

To obtain results of physical interest in the classical case, one had to
average over {e}. In the quantum mechanical context, a similar average has
to be carried out. This, properly speaking, is an analysis on the Liouville
level; the dynamics is solved in terms of the € variables. to the bitter end.
and the final answer is averaged over e. Thus

W tre={aft).= "yt i), (71a)

The reason for the repetition of this formula is to stress that the squaring
of the amplitude has to take place before the averaging over ¢ is carried out.
The dynamics gives as quantity of phvsical interest «, 2 = II".: only after
the dvnamical calculation is compieted should the € average be wuken. With
the explicit form of a,(r), of which (71a) gives a sample. «,(7)* can be
calculated in terms of A and e variables. The ¢ averaging can then be
obtained in the usual straightforward, but tedious fashion.

Tt is more instructive to proceed in a slightly different fashion (the answer
1s of course the same). Start again by considering (64b); however, assume that
of the 7 points, exactly r (<¢) are marked. Since the state only changes at
such marked points and S is independent of p,

o , 1
1)) = STyl = 57 () (71b)

Using the fact that S can be diagonalized by U [Eq. (69¢)] gives
. RS -
n,i1)) = UDU-1 (o) (7le)

With the explicit form of U and D, this is easy to evaluate and
T im0y = AT 4 (A4¥)] (72)
Wilr, ) = {1 A7+ (A% 2 (73)

This is the probability that the ball at 1 at p shall be white protided that there
are r markers in the interval p — I,..., p — 1. The latter probability itself
is

Y(r) = [ric = ) p(l — Wt (74)
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This is a consequence of the assumed marker distribution. Averaging
W (r, t) over all marker distributions gives the needed e average of W', ,

W) e = Y Wi, 1) 90)
r=0 ,

= 1
I

Ar (A=) 2 sl — el — )y (73a)

M-

r=0

This sum can be carried out using (69d): the answer is
(W Oe = 3+ FRe{l — 2 = 2u\(1 — NP2V (75b)

The detailed analysis of this expression will be postponed till later, but it 1s
perhaps useful to mention that this expression is strikingly different from the
classical result (66b). As 1 — co, (W (r}>, does approach 1, but not at all
monotonically. lidstead, it oscillates with a decreasing amplitude and a
frequency v ' '

vo= (1127) tan 1 2u(A — A 21 — 240) (7501

Hence the classical and quantum mechanical results are distinct before the
{e; averaging is carried out [as illustrated by (70b) and (70c)]: but more
surprisingly. thev also are quite different agfrer this averaging has been
performed. -

5. THE QUANTUM MODEL; EXACT DISCUSSION

5.1. The State Space and the Density Matrix

To give a description of the dynamics of the system as a whole. rather
then just of its individual constituents (as was done in Section 4). It is
necessary to construct the space of states of the system. Since the balls move
independently of each other: the state of the svstem at any tine 7 1s a tensor
product® of the states of the individual objects:

n

Gt =11 ® oy, p.1 (76a)

p=1
Here, | x,, p, 1, is the color state at location p at time ¢; it is, as was noted
in Section (4). a vector in the two-dimensional complex color subspace
C®. The state j, 1 is a vector in 2"-dimensional tensor product space C.

2 A tensor product will always be denotéd by I1, ®. Ordinary products will be written
in the usual way, T1, .



Models in Nonequilibrium Quantum Statistical Mechanics 141

The time evolution of the system as described by the Liouville equation is
therefore an equation of motion for vector | j, 7 in C. Equation (76a) holds
for all times; in particular for r = 0:

n *

1,00 =[] ®la,.p.0; (76b)
@ p=1
The state |j,0, depends explicitly on the values x, (p = 1, 2,...,n); it
describes the initial cofor configuration. As written, the states | «, p, 0> could
be color eigenstates (eigenstates of {,) or not.

To construct the density matrix of the system, it is simplest to recall
that for any system, the density matrix p(7) can be obtained in the following
fashion. Let ,j, be a complete orthonormal set of states which spans the
phase space of the system, but which is otherwise arbitrary. Assume that the
initial density operator is given:

pO) =3 b, 1j><ji (77)
j
Then the density matrix at time 7 is

plty =3 byij 1yt (78)

J

In (78). j.r. is the smte which evolves via the dynamics of the svstem from
the state ' j at time ¢ = 0. (For a Hamiltonian system. j./» = ¢ ¥ [ )
The coefficients b; determine the ensemble. To apply (77) and (78) to the
model. assume that the initial state 1s a tensor product of color eigenstates? =

n ’
L0 =3 &inp, 0 (79)
=1
Thus p(0) can be written (exhibiting all indices) as

n

pl0) = 3 3 bopen, [1 @ 115, 2,0 Tny, 0. C (80)

Ty M, »=1

The initial color configuration is given by the b, ..., . If these coeflicients
have the special property that

- n
oo, = 11 b, (81
p=1
21 An effort has been made to denote color eigenstates by | 7, p, 0, while general states

are written as | a, p, 0.
22 It is straightforward to check that these eigenstates are complete and orthonormal.
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the inttial distribution is factored. (This is sometimes called an wncorrelared
initial distribution.) It will be seen later that factored initial distributions icad
to substantial simplificatjons in the formalism, although their special pliysical
properties are not quite so obvious.

The specification (80) of the initial density matrix is one where the initial
density matrix is diagonal in the color representation. For, taking the matrix
elements of p(0) between color eigenstates ;" -+ n,/. 5y - 7, yields )

< Lp(0) e = Oy e Brrbor 0 (82)

Equation (82) also shows that p(0) determines and is determined by b.

To use the expression (78) for the density matrix at time r, it is onh
necessary to find the state ; j, 7> into which . 0 evolves after a time 7 under
the time evolution as specified by the model rules.

5.2. The Time Evolution

The state of the system at time 7 is the tensor product

=11 & «pt {83a)
=1
Similarly. at time 7 — 1,
gt D=1 & lapr+1> (83b)
p=1

Both . j,¢> and | j,t + 1) are vectors in C. | a. p, t> 1s a vector in the color
subspace C, . This subspace is associated with the location p, not with the
particular ball. For this reason, the notation ! «, . p., t> is really redundant.?*
This is a color state at location p at time /. and it is specified completely by
writing | «, p, 1>. The model rules relate o, p — 1.t -~ 17 in subspace C,_,
to . p.t insubspace C,.by E,:

lo,p+ Lt 1 = E, apt) (84)

[E, is given by Egs. (62) and (63d)].
Combining (83b) and (84). one has

it 1= H @qu‘%}?—l,fl (85)

2 Even so, this notation is often convenient as a bookkeeping device; it is used as such in
what follows.
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Since the products in (85) and (83a) are over all p = 1,...,n, both | j, ¢ and
{J, t + 1> are vectors in the tensor product space C. However, the operator
E, takes a vector from the subspace C, and constructs from it a vector in
C,.1 ; the dynamics can nor be described in a single-color subspace: only by
taking the tensor product (either with a cyclic boundary conditionp -+ n = p,
or an infinite tensor product) can the time evolution of the total system be
described.
Iteration of (84) gives

i s Ds t> = Ep—l Ep—f 2 N0 — z, 0:\ (86)

(Here, the color variable on the right-hand side is written as 7. to indicate
that the initial state is a color eigenstate.} The states of the complete system
are, from (83a),

Ejst\/\ = H @Eﬁ—l'..Eb—tlnsp_t70>' (87)

p=1
Using this expression in (78) and putting in all the indices gives

n

p(f) = Z Z b’ny'-'nn H @ Ep—l Em-t (Mt P — 1 0>

Ty ny =1

X, p =10 E o E

p=1

(88}

This is the explicit expression for the density matrix. It contains the
coefficients b, which describe the ensemble; the dynamics is contained in the
products of the £ operators, and the many-body character is expressed by
the tensor products. The quantities of greatest physical interest are the matrix
elements of p(t) between states of the compiete system. These states themselves
are tensor products

e =TT g
XA = n Rl
v

The matrix elements can be obtained directly from (88), or alternately (78)
gives )

Caulpi By =3 by Cxljo gt B (89)

In (89). both {x and | j. ¢ are tensor products; using the formula (generally
valid for tensor products) ‘

a@blad @by =<aiaXb|b> (90)
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one obtains
Cag oy pl0)i By v+ By
= Z Z bnl'"'nn H <ap ? Ep——l Ep-—t | Np—ts P — 1, )
my L P

X s p = LOLE] - Bl 1B | (91

Equation (91) contains only ordinary products; the application of (90) has
eliminated the tensor products.

With the formulas (88) and (91), the calculation of the density matrix
has been completed. These formulas are not too transparent as they stand:
before considering simplifications, a few comments concerning the derivation
might clarify the nature of these results. Using (78) and (83a), p(¢) can be
written as

Pty =3 Y byn, [1 ® impsps tDm,, po 1] (88")
LA Ny,

b

with @ 7, ,p, 1> given by (86). The complexity of this expression stems {rom
the fact that the same E, operator occurs in many different vectors, which
in turn occur in the tensor product. As an example, take 7 = 4 and consider

’77P - l* 4\’ = ED—EEJ)—BEN—.IEH—S 77~f»7 - 5~ O (92‘1)
P4y = Ep B, oE, 3By 4 imp — 4.0 (92b)
imp 1,4y =FEFE, E, E, 5inp—30 (92¢)

The tensor product constructed from these vectors to obtain p(4) from (88’)
will contain. as can be seen, a number of factors E,_,. E, ,. This can be
written down easily enough. but the formulas become a littie involved. The «
averaging which eventually has to be carried out becomes particularly
complicated. precisely because of the occurrence of the e terms in each
factor E. ' )

It might appear that the dynamics as given by (85) is very trivial. That
is in fact not the case. To see precisely what is involved, consider a case
where # = 3. Then, (83a) reads

ety =11, @ a,2,t) @1, 3,1 (93)
Here,

O p, > = a, ((1)) + b, ((l))’ p=1273 (94)
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P, p, f, 18 a vector in the two-dimensional subspace C, with components ¢,
and b, ; however, | j, 1, is a vector in the 2 = 8-dimensional space C. its
components are (using the standard realization of the tensor product)**

Q305057
a,asby
abya,
a,bsby
biasaq
byasbh,
byb,a,

\_b1b,b5

l‘jvt; =

The state vector | j, t - 1> is given by (95) as

it+ 1 =(E 2, Lt,)B(Eyia2.1)) X (Ey i, 3,8) (96)
The known expression for £, gives components of the vectors: E, " . p. 1",
Write for convenience

(E, opor) = (297 ibwy, 3 (97a)

=1,2.3
knpapfo,,bp 7 ’2
Here /. m, n, and o are known coefficients determined by £, : for example.
L= 30+ e) — (1 — &)1 — A2 (97b)

1t should be noted particularly that the vector E, «, 1.1 is contained in the
subspace C,.; : thus in this example, £, | «. 1,7> € C,. With the explicit
forms (97a) and (96), and using the same realization of the tensor product
in C, the components of ' j, ¢ -+ 1> can be obtained as

{laag = By )ha, — myb W ha, — 1.bs)
bjt+ 1 = . : (9%)
(n3y = 03bg)imay + 01b))ma, — 0sb,)

The effect of the time-evolution operator (for one step) is to produce
[, t+ 1>, Eq. (98), from | j, t>, Eq. (95). Clearly, | j, t = 1> is much more
complicated than |J, t; and no immediately obvious operator exists in .C
which produces | j, # -+ 1> directly from ! j, t>. In fact, it is only through the
use of the tensor product (96) that one can establish a simple formal relation
between |/, t + 1>and J, r>. However, as can be seen, the resulting dvnamics
is far from trivial.

# See, for example, Jauch.®®

822/4/2/3-5
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It was mentioned. pretty much in passing, that the subspace C' is the
two-dimensional color subspace associated with location p; the operator £, .
acts on vectors in this subspace and construct vectors in C¥; from them.
Also. E, refers to a location, not a particular object. Classically, one could
follow a particular ball [for example, by following an object that initially
(¢ = 0) is in a particular place]. Furthermore, the color change classically
comes about because of the prescribed motion of the balls. Quantum
mechanically, by contrast, the state is totally determined by the color
configuration; it makes no sense to ask which ball is where; the specification
of the color state vector [1, & I#n,p.7  gives all possible physical
information. The change in the color configuration quantum mechanically
is described by (84): this asserts that the state at p — 1 at ¢+ — 1 is determined
in a prescribed manner by that at p at . However, it is not at all necessary
(although presumably legitimate) to associate this change of state with the
actual motion of a physical object. This shows that indeed quantum
mechanically £, must be associated with a Jocarion, not with an object. It is in
fact impossible to associate £, with a particular ball. For, if this were done,
the state of ball p at time ¢ would be E,.,_; -+ E,_;E, i 5, p.0>; here. all
operators E,. E ., E o E,_,_; In this sequence would have to act in
the subspace of ball p. However, another ball, say ball p — 1.is at time 7 in the
state E,qE iy - Byl p -+ 1.0 This would require £,_,, £,.. ...
to act in the subspace of ball p +— 1. Thus £,_; would have to act in two
independent subspaces and this is impossible.

5.3. The Reduced Density Matrices

It will be assumed throughout-that the trace of the density martrix is
normalized to one. Thus
Z Z <,71' ")n' | P(t); ’71' "7n’> =1 - (99a)
1y’ Ny’ .

Equation (9%a) in conjunction with (91) vields the condition on the
coefficients 5

Y briery = () B = 1 (99%)

né

{The essential element in the step from (99a) to (99b) is the completeness
relation

Yty PP i pt =1 (100)
In Eq. (100), %, ,p> are color eigenstates; they are summed; {x,p, 1 is a
general state in C,, ; it is not summed.)
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The density matrix assumes a particularly simple form in the case that
“the initial distribution factors. In that case, using Eq. (86),

p(t) = Z N by, b )T ® imapt<npat
»

iy

HQmeﬂ 1'”E.v-—t'5”7p-i‘ap—t,0>

T p—t
X, _ysp—LO0LE o EL (101)
The writing of this expression as a product of sums was possible only because

b factored. It is further possible to exchange the summation over %, , in (101):
with the E operators, define r,_, by

’.p—t(o) = Z b'r; 'n,p— Z, O,(/\nsp -1 0 (102)
7

r,_(0) is clearly an operator in the (p — f)th color subspace. p(r) can be
written as

P(t> = H ® Ep-} Ep-tr;q—t(o) Ef;._t Ef)_} . (1038.)
b .

Thus in the case of a factored initial distribution. the density matrix is an
n-fold rensor product of r,(r).

p(t) = [T @ rypelt) ; (103b)
P .
rp—t(t) = Ep—l : p t p t(O) E ’ E;_l (103C)
The normalization condition (99b) also becomes very simple for a factored

initial state:

e

Y Y bb, Yb = (104)

n

It is interesting to observe that the operators r, satisfy typical operator
equations of motion. From (103c), it follows easily that

rpi(t + 1) = Eprp—t(t) E,!

The physical discussion is facilitated by the introduction of the reduced
density matrices, which correspond to contracted distribution functions in
the classical case.

Various general formulas for the traces of tensor products are useful
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in this connection. If a; and a,” are vectors in a vector space F/; , and tf 4, and
A, are operators in the same space. then the {ollowing relations are satisfied:

 THA.© A) = (Tr, A)(Tr; 4)) (105a)
Tr(d;, ® 4) - (4 ® A,) = (Tr, A,A/)Tr; A,4,) (105b)

Here, Tr; A, , means that the trace is to be taken in the vector space V', .
Further,

S

Z Z \al '\/" 2 @ an . A]_ 3 43 @ A al & as - 2 anj'

=& A, ] Trydy - Tr, A, (103¢)

i

The reduced density matrices are obtained by taking matrix elements of
p(1) [Eq. (88)] between color eigenstates of the system (these states, of course.
are tensor products) and taking the trace over all but a certain number of
color variables. Equation (88) can be used in conjunction with Eq. (105).
or {91) can be applied directly. Using Egs. (86). (88'). and (91). one obtains
the expressions

‘0. ppot) ) “Z CY ey ey ) e

Ty

== (\;}, (Z) b?,l...,,”/\np’ 7. p. ‘) \np‘ .

n

x [T < tmsotm st in> (1062)

s

Oy e Dy @ )My s M

Z YKy e )y

"

#“

= (Z) (Z) buonns” 1o 2, 0ot 1)

n! n

Xl g X, g, tlagy [T < imys 2,8, ¢ims  (106b)

$¥ pFEg
Equations (106a) and (106b) are the definitions of the one- and two-particle
density matrices.®® The sum over u;" in (106a) specifically excludes the pth
color variable 7,'; similarly, the summations over 5,” and 7, are excluded

% The construction of higher density matrices is the obvious generalization of the procedure
given,
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in (106b). The notation (3_,/)" and ()" indicates this once more! while the
prime on the products indicates that the terms s = p in (106a) and s = p
and s = gin (106b) are excluded. From these definitions and the completeness
relation (100) (applied to the sums over ') it follows that generally

e )imyy =3 Y b ot ot L (107a)

mn Ty,

”_n

0,1, e ey g O

=2 X bl ot ot U L gt gty
o (107b)

These relations simplify considerably for the case of factored initial distri-
butions. For example, the one-particle density matrix becomes

<7)p’ i pl(p’ f) 7}’1” = 2 Z Z bm o TU/-—I - bﬂu

Tp—t K

ey E,. o El i op =0 G

=1 =
X Myt p — 1,0 E;—t E;i‘—l .M, (108a)

The summations® over all  except n,_, can now be performed and give unity
[Eg. (104)]. The remaining sum over 7,_, can be exchanged with the E
operators; 1t just vields r,_(0) [see Eq. (102)]. This, combined with (103c).
gives

i pd o 1) = (Lt (108b)
In other words. the operator r,_(7) is the one-particle density matrix. The
form (103b), together with (108b), shows that the density matrix is the tensor
product of one-particle density matrices:

ptt) = 1 2 pulp. 1) (109)
p=1 .

The analysis of the two-particle density matrix for the case of the factored
initial distribution follows the same pattern; one obtains from (107b) the
result

'

n RPN = ), O g0 (10)

2 It is perhaps worth recalling that the summations over n, are sums over the miriul pure
color states. It is for this reason that the swunmation over 5, in (108a) has been explicitly
displayed.
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There exists a general fomula relating matrix elements of tensor products of
operators to individual matrix elements:

‘<a1, @ azl i A]_ ® A2 j a’ll ®ag> = <al’ ’\ Al f a/ll/‘ ;ag, l Az ‘ a§> (l 1
Applying (111) to (110) and recognizing that the states denoted by 7,
and 5, are in fact tensor products yields the result

pAps g, 1) = 1y () @ relt) = pi(p, 1) ® pitq, 1) (112)

Similarly, one can show in general (for factored initial conditions) that the
mth reduced density matrix is the m-fold tensor product of the one-particle
density matrix. Collecting (112}, (108b), and (103c), the final results for the
one- and two-particle density matrices are

pupt) =1, (1) = E,y " Epst,(0) E;—t  Epy (113a)

rodQ) =Y byin, p—t,00{n,p—1.0] (113b)

Pilprq.‘[)zpl(pvt) E(:'\Pl((/:’) (H}C)

t should be stressed that these results depend explicitly on the assumption

that the initial distribution is factored. For general initial configurations,
the one-particle density matrix is similar in structure to (113a). The two-
particle density matrix. however, no longer possesses a tensor product
structure. Using appropriately modified arguments. one finds in the genera!
case

pr(prt) = Ep_y o Epgt (0) ET_, - ED_, (114a)

rP0) =Y CP 9, p — 1,00, p— 1,0 (114b)

n

Here, C!V is given by
JIREDIN’ =V (114¢)

MieeeMpygee-Np

Ty Tin

Note that 5,_, is not summed in (114c). This results are indeed similar in form
to Egs. (113a) and (113b). The matrix elements of p, are given by

n_n

<y, 1 pps g D gD

(2) o N R
= Z Z Cﬂp-t’nu—1<7]}’ LU,P.I,\"\'I], I r Mn

Tp—t Mgt

X L) 1, g, 0, g9, t [ 9> (115)
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Here, C¥ - is the sum of by g over all o's except 9,_, and 3, . If
ce® does not detOI’ the two- partlcle density matrix is not a tensor product;
it cannot be reduced further. It would be very worthwhile to study the general
case; for the present, however, just the factored case, which yields (1 13a—c),

will be investigated further.

5.4, The Master Equation

In the quantum mechanical as in the classical master equation approach,
the system is described by a probability function ¢(x,’,..., ,’: 1), which gives
the probability that object p is in eigenstate 7},,’ of the color operator Q,, .
Since Q, and Q, commute, one can SImultaneously specify all 5,". The
master equation gives the change of this function in time. The independent.
variables in ¢ are the eigenvalues of the color operators. A superposition of
color states does not occur in the master description. The model is charac-
terized by P(n 7)) = P(y; sors My | m1'seees "), which gives the transition
probability {rom state o, ... 3, to 9y ..... 7, in.a unit time. The independence
of the balls shows that P has a product structure:

Py e, | m v, V=11 Pim, ) (116)
r .
The mode! rules assert the following:
(a) If point p — 1 is not marked, 7, and %/,_; are the same:
Py [ pet) = 05 0, (117a)
(b) If point p is marked, », and 7,_; are different with probabiiity A
Py i) = /\(i =Sy )1 =8, (117b)

Since points are marked with probability p, all the rules are collected in the
expression for P, :

Pl(np l 7];%—1) = (1 '— 2)\/‘1') Snp.nz’)_l + )\:U' “17C)
The quantum mechanical master equation is

Py ey P st 1) = Z z POy n i s Y gy ey, 5 0)
mem (118)

with P given by (116} as a product of » factors, with P; given in turn by (117¢).
The form (117¢) contains exactly the same information as the classical
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expression (57a). It is written slightly differently. but it can be directly checked
that (117c¢) is identical in content with the form

Pin, ) = 31+ m (= 22 (117d)

(117d) is exactly the classical expression. The basic transition ﬁrobability
is the same in the classical- and quantum mechanical master equations: the
structure of the equations (118) and (57¢) is also identical; hence all classical
results obtained in Section (3.3 can be carried over without further change.
Because of this identity, it is not really necessary to discuss (118) further.
However, a few observations might be useful.

1t is straightforward to check? that (118) possesses a factorization
property; that is, if

93(771 seees Mn 30) = n 97’1(7];;,0) (119a)
» .

then
s i) =11 @alm, . 1) (119b)

B
where ¢4(n, . 1) is given by

@iy ) =3 L Y Pl ) Py s e ¢ l,n 0

Tpey Vp—a M —t ( l 19\:)

Thus 1l ¢ is factored initially. it remains factored for all times. (This is in
marked contrast to the Liouville equation, where correlations are-set up in
time, even if the initial configuration is uncorrelated.)

Since the master equation can be solved for arbitrary initial conditions

[see either (32a). (32c), or (50b)]. it is not necessary to impose the initial
factorization as expressed by (119a). If, however, one assumes that

qiln,, 0y =13 =21y, ¢(n,0) =[] 910, (120)

v
it can be shown easily [combining (119¢) and (117¢)] that ¢ (7, . 1) is given by
%115, t) =3+ 2u-1bp——t7}p(1 - 2/\:“*)f (121
This expression can be used in (119b) to give

PNy s M 3 1) = 27" + (1 — 2A‘U')t Z by
I3

+ (1= 20w ¥

LS

blbqﬂp»tﬁﬁ% (12:)

1

2" This can be done most easily by iteration of (118), using the initial condition (119a).
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This result is of course the same as that obtained before [Eq. (32a)]: however,
it is instructive to see how the initial factorization simplifies the calculation.
The formulas given [(122) for the Master equation and (113) for the Liouville
equation)] solve the quantum mechanical model for factored initial
conditions.

5.5. The ¢ Averaging of g,

The results obtained for the one- and two-particle density matrices
depend through the operators F explicitly on the ¢ variables. As in the ¢lassical
case, the quantities of physical interest (also those to be compared with the
master description) are the ¢ averages of the observables. Since the matrix
elements of the density matrix represent probabilities, these are the entities
to be averaged. This is to be contrasted with the procedure used for (4.3),
where amplitudes were computed and squared, and then the € average was
taken. Although the procedure is different, the physical principle is the same:
the € average is to be taken after the observables are obtained. To carry out
this averaging process in a convenient manner. it is best to present a reinter-
pretation of the mairix elements of the one-particle density matrix. Using the
abbreviation

O,e)=E,,  E, (123)

these matrix elements can be written as

o i

7, opypet) = > b, m, O/ n-m O (e y, (124
Here, 7,/ and 7/, are color eigenstates: the summation over % is a sum over
the states present in the initial ensemble [see (102) and (108a)]. The matrix
element

Iy 1O iy =) E,.y  Ey i imp — 1

is to be understood in the following sense: ! n. p — > isastate in the {p — #)th
color subspace: £,., acting on it produces a vector in the (p — 1 -~ [)-
dimensional subspace, and E,_,.; acts on.it. etc. Thus, O, acting on
I m, p — t; yields a vector in the pth subspace; its scalar product with 7, is
the entity occurring in (124), The matrix element (124) can be further
simplified by introducing the initial density matrix in the (p — r)th subspace
as was done in (102):

r,{0) = Z b, mp— 10y, p—10, (125)
n .
% This section contains a rather detailed description of the € averaging. Anyone primarily

interested in the physical applications could skip the details and just note the general
method and results.
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Equation (125) combined with (124) yields
A, e e Dy =<, 10 (e)r, (0)0 (¢) 7. (126)

This formal result was obtained before: it is no more than a recasting of the
matrix elements of the one-particle density matrix. For the present purposes.
it is important to note the following interpretation of (126). Consider r,_,(0)
as a 2 x 2 matrix whose matrix elements are

\/‘7];)_t rp_i(O)‘ 7);,7_3> = Z bn<"7,p—t ‘ P = Z 0,\(\777 p =1 0 i 7};()_{>' (127)

7'._, and n’_, are color eigenstates in the (p — t)th subspace [given by
1 0
(0) and ()
as always]. The sum over 5 has to be over a complete set. which again could
be the eigenstates
ol ()
0” 1/

but this 1s not necessary. One can now, by direct calculation. verify the
identity®® "
' OrOtln"y =3 by O mn O 7 (128a)
n

This 1s valid for an arbitrary operator 0. The right-hand side is identical in
form and interpretation with (124). The left-hand side contains OrO*, which
to be understood as an ordinary matrix product of 2 » 2 matrices: the
matrix r is given by (127). Further, calling OrO* = M, the left-hand side of
{128a) is to be understood as:

@M = i )O0(T) (128b)

Combining (123), (124), and (128a) leads to the result
pp, t) = Ep g Epirpi(0) E;—f 52—1 (129)

where now p, is an ordinary matrix® product of (2r — 1) two-dimensional
matrices with r,_(0) given by (127). It is easy to show from (127) that r has
the form

o=t 7 ) (130a)

z i —c,

* For convenience in writing, the indices have been omitted in (128a).
% The matrix form of E, is given by (62) and (63d), or (132a).
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Here. - is an arbitrary complex number, and ¢, is real, —§ = ¢, =5 i. If the
states n which are summed over in (127) are themselves color eigenstates,
r, reduces to '
tte, O
PO = (75", c,,) (130D

The sum over 5 in (127) is a sum over those states that occur in the initial
ensemble. Since it was assumed that the initial density matrix was diagonal
in the color representation [see Eq. (80)], the states occurring in the initial
ensemble are indeed color eigenstates. Thus, the form (130b) of r, is the
appropriate one to use.

The great advantage of the explicit matrix form of p,{p, 1) Is that now
the € averaging can be carried directly out:

<ol p, 1ye = Z Z Pley ,...s €,) Epy Ep—trp—((o) E;—t E;~1 (131)
€1 €n

The ¢ variables are contained in the E matrices; Ple, ...., €,) is the probability

for a particular marker configuration. Although it would be possible using

the expression (8) for P to evaluate (131), it is simpler and clearer to follow

the method used previously in Section (4.3). Recall that the matrix expression

for E, is given by*

(1 — A2 a2 .
S = i 2 (1— A‘)l/z) {132b)
Further, S can be diagonalized by a unitary matrix U:

= %(} I ] (13%0)

U= (1/»/2)(1, ) (1326)

$ = UDU= (132d)

A
D= ( /1*) (132¢)
A= (1 — A 4 a2 (1326)

To carry out the ¢ averaging of the product of matrices in (129), assume first
that of the 7 points, p — | to p — ¢, exactly s are marked. The unmarked
points yield E factors of unity [see (132a)]; each marked point contributes an
S. Hence for s marked points,”p, becomes

pu(p, t,5) = Sr,_(0) S—¢ (133)

3t This is the identical nomenclature used in Section 4.3. It is repeated here to facilitate
reading. ‘
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The average of p, is obtained by multiplying p,(p. 7. s) by the probability
that of the r points. 5 are marked, and summing over s == 1..... t. Therefore

¢
Cpdpat)e = z (st — s) T ps(l — )= S, _(0) S+ (134)
s=0 '

The remainder of the calculation consists in evaluating the matrix product
and performing the sum over s. Since § can be diagonalized by U. the
calculation of S* is straightforward and yields

so=Re )t (; ') (135a)

Using this result. matrix multiplication gives
S, {(0) S~% = 11 + Re(c,.A%*a,) (135b)
Here, the form (130b) was used for the matrix r. The o, is a 2 < 2 matrix

(which will occur frequently)

1 i )
Gy = |, 1136)
0 Kz —

The matrix occurring in (134) has the simple form (135b). Of special impor-
tance is the simple s dependence of the matrix. Its occurrence as a power
A% allows the application of the binomial theorem to obtain the sum in

(134), with the result

prlp. e = 31 + cp Refll — D = 2pd — M9 oy)  (137)

This is the final result for the one-particle density matrix; it is given here as
a2 X 2 matrix. All questions dealing with the one-particle distribution can
be answered by (137).

5.6. The ¢ Averaging of p, **

Before calculating the e average of p, , it is useful to collect two results.
Note first that (134) and (137) can be combined to give the sum formula

1
o prte =Y [tls! (1 — Y us(l — @)= §,_.(0) S

3
<

1 + ¢, Re{Rlay) ' (138a)
R=1— 2+ (A — A2 (138b)

‘

82 See footnote 28 as the start of Section 5.3, The calculations in this section are somewhat
long, a little tricky, and quite tedious. Some details are omitted.
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This sum formula is valid for all values of r and all p. The second observation
deals with the evaluation of the matrix product S*r,_,(0) S~*. The same
procedure [use of (132d)] can be employed to obtain another matrix product:

S¥p(p, 1);¢ S =}l + ¢, Re(R'A>0) (139)

Both these results will be needed; A is given by (132f).
The discussion leading to (129) for the one-particle density matrix can
be repeated for the two-particle density matrix, so that p, can be written as

palqs ps 1) = E,y = Epiyrq_(0) E;—t “Ejy

4

@ El!—l b Ep_,l'y_t(O) E)::—-l e ‘El;’l (IJ‘O)

p2 appears as a tensor product; each factor is an ordinary product of matrices.
In (140), p is assumed larger than ¢; p, g, and ¢ are given and fixed. The
locations occurring in (140) are the points labeled p — 1...., g — 1. Divide
this set of points into three nonintersecting sets:

(Iy Pointsp — 1, p — 2...., up to and including ¢.

(11) Pointsg — 1, ¢ — 2...., up to and 1ncluding p — 1.

(IIT) Points p — ¢t — 1...., up to and including ¢ — +.

]

Itisclear thatset [will contain just matrices of the p chain, set [1! will contain
just matrices of the g chain, while set TI may contain matrices of both chains.
If set II is not empty, there will be overlap between the chains. Whether the
chains overlap depends on p. ¢, and r:

p—1t=aq. tlp—gq no overlap (141)
p—1t<q. t>p—gq overlap (142)

Consider now a marker arrangement with s; markers in region I. s, in 11,
and s; in TII. Since the £ matrix for a marked point is just S, p, for this
particular configuration becomes

P, Py £, 5y, S, 53) = S%88%r,_(0)ST25™%
28780, _(0) STHSTE (143)

Writing the product of S operators as 5%, 5" is done only to indicate the
origin of the factors; these factors commute, of course. To obtain the e
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average of py. po{p. g. t. 5y . 55 . 85) must be multiplied by the probability of
this marker distribution and summed over s, . 5, . 53

p=q q-p+t p—q

. (r—a!
‘7( s 5t e =

{palg, pr 1) = 3 ST —q—r

;=0 §,=0  §3=0

P—q—$

)1 lLLS](l — )

4 (q — P T t)z ®32 — q—pt—ss
x(q—p—l,—t—sg)!sz!P‘(1 )

(p—q)!

st (p—q—

X §08%rg_(0) STEST ) 8™, (0) STUSTE - (144)

—q—s3

sy =

The complexity in this formula clearly stems from the s, summation. which
contains contributions from both factors in the tensor product.

In the case of no overlap, region 1l is empty, s, = 0, and the summations
over s, and s; can be performed separately (note that in this case. s, and s,
both run from 1 to r); using (138a), the resuit is simply

<P2(q’ p7 t)\'e == <P1(‘7: r)>e ® <P1(ps r)>e b 4 { p - q “45)

If there 1s no overlap. the averaged two-particle density matrix factors inte
product of averaged one-particie density matrices, as could be anticipated.
In the case that there is overlap {(which will be assumed from now on), the
s; and s summations in {144) can still be carried out using (138). Tt is necessary
to observe that the s, summation runs from 1 to p — ¢ in (144) instead of
I torin (138). Thus <p,>, simplifies to

g—-p+t

<P2(f]: s t)>£ = Z
=0

(Q-P"-I)' Sor —pil—8y
(G—p~1—=s)ls5! WL — )T

X SHpiqp — 90 ST R S pylp,p— g ST (146)

Apart from the combinatorial factor, (146) contains precisely the matrix
combination noted in (139). The purpose of the further reduction is to cast
(146) in such a form that the s, summation can be performed. It is somewhat
simpler to study the correlation function X(g.p.r) instead of p, .. The
function X is defined by

X(g,p. 1) = {ps(q, p. D> — {pa(q. 1)>c @ Lpalps 1)) (147)
Substituting (139) in (146), constructing X as in (147), and using (138). there

results
q—p+t

(g—p+0)!
X )= 4 :
(G, p.1) = ComiCypy sc_,Zr—ﬂ (g—p—+1t—5)! 5!

x {Re(R"14%0,) @ Re(RP=1/1%0,) — Re R'o, %, Re R'a,!
(148)

)(1— pt—gy

pHl —p
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Most of the calculation leading to (148) is routine manipulation: one does
need the tensor product rule

A+-A)RZB~-B)=APB+ARXB +A4 KB+A G B (149)

The terms occurring in (148) have an obvious enough origin; perhaps the
only surprising feature is the absence of terms linear in c¢,_,, which come
in through (139) and (138a). For such terms, the s, sum can be evaluated;
this shows that they indeed cancel. Equation (148) can be simplified further
using the identity

Red S ReB=3Ad % B~AF B~ A% % B= A= 2 B (149b)

Applying (149b) to the bracket in (148) gives

{ — %Re{(REUJ—Q)/r}Sz — ) 0.0 ) 0 + (i R 12{p—a) __ ] R §2f) oy @‘ OO*}
{150}

At first sight, it may appear strange that the coeflicients of ¢, = o, and
oy & 0,* in (150) are not the same. One might expect R =0 A
instead of | R {2*~9 in the second term. This is in fact the case, but ;A4 = 1.
as a glance at (132f) will show. With (150), the s, dependence is again a simple -
power, so that the sum over s, can be performed. If one resubstitutes the
expression for R as given by (138a) in terms of /1. noting that

R=1—20x — 2ip{A — A = 1 — pu + pud? (151
the result of the summation is

X(g,p. 1) = €uiCpy Re{[l — p = pARP0=0(1 — p = pAi)=r
- (I — i+ P‘Az)ﬂ] gy & o [1— = /J“'lc e
— } ] — wo= ,11./12 ‘:21] o @ Ul)*j (1:_)
Equation (152) gives X for times ¢t > p — ¢. With (152) and (147), the two-
particle density matrix is explicitly known; all questions concerning the two-
particle distributions can be answered from (152).

The formulas (152) and (137) are perhaps the most Important results
of this paper, giving the exact one- and two-particle e-averaged density
matrices. In the next sections, the physical resuits which follow from these
rather complicated expressions will be analyzed. To provide the model with
some measure of physical relevance, the next section contains a *magnetic

‘realization” of the model.
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6. A MAGNETIC REALIZATION

The model rules of Section 4 were quantum mechanical versions of the
rules of the classical models. As already noted in the introduction. these
rules were abstracted from actual physical situations: however, the simpli-
fications introduced were so drastic that it is not at all ciear that the final
models have anything to do with physics. It is therefore interesting to show
that it is possible to construct a more or less realistic physical system which
obeys the model rules set down in Section 4. The rules given there referred
to the single-particle problem—this case will be considered first; the many-
particle problem will be treated later.

Consider a straight line in the xy plane having a direction e given by

e = € COSa —+ €S5inx (153)

The unit vectors in the x, y, = directions are e, . e, , e; ; 2 is the angle the line
makes with the x axis. Assume that somewhere an origin is picked on this
line; the line 1s divided into segments of size 4. The distance s from the origin
can be written as

S = gd —vd (154)

Here, g 1s an integer 0. 1, 2..... while » lies between 0 and [. Imagine that a
particle of spin 1/2 moves uniformly along this line. It moves as a classical
particle with momentum p, (momentum along e) and speed ¢:7. It is also
possible to consider this motion as a succession of steps of size d. euch <tep
taking a time 7. The trajectory may be considered as generated by the
“Hamiltonian” ‘

Hy = pldi7) (155a)

The time-evolution operator for a time interval 7 is

N

b}

Sy = &7 = ¢ (s

S, describes the uniform motion of the particle along the line ¢. The particle
has a spin 4; hence it possesses a magnetic moment

b=go (156)

g 1s the usual gyromagnetic ratio, o is the Pauli matrix spin vector®:

0 1 0 —i 0 -
o, = (1 0). | o, = (i Ol)’ g. = ((1) _]\) (157)

3 Notice that these o matrices have nothing to do with the ¢, matrix of the previous
chapter. Notice further that /% has been put equal to one.
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Now introduce a magnetic field in the xy plane perpendicular to the line e.
The magnitude of the field is a function of s, the.distance along the classical
path. The field is assumed to be [using (154)]

By(s) = #(1 — <) Ble; X e] | (158)

The field is in the xy plane, perpendicular to the direction of motion of the
particle. €, is +1 or —1, as before. If ¢, = -1, there is no magnetic field
in the domain from gd to (g -~ 1) d. If ¢, = — 1, there is a magnetic field.
Its magnitude is B; the vector product defines its direction. The magnetic
interaction energy of the particle with the field is then [using (150) and (156)]

Hy = (1 —¢) gBo * [e; X €]
= {1 — ¢,) gB(o, cOs & — 0, 5in &) (159

Because of the occurrence of the Pauli matrices, H; is a 2 > 2 matrix. The
total Hamiltonian of the system is H, — H,. The time-evolution operator
for a time interval = for this total svstem 15 [see (159) and (155a)]

S(7) = explipyd + I7gB{l — ¢)}o, c0s ax — o, sin )] (160a)
Eguation (160a) shows that the time-evolution operator splits up as a product;

one factor S, describes the uniform motion along e, the other S;describes
the interaction:

S, = expliigr(l — €,) B(o, cos & — 0, sin a)) (160b)

The remaining discussion will just deal with the interaction. The known
properties of the Pauli spin matrices make it possible to write S;asa 2 ~ 2
matrix )

S.(g) = cos x, = (i sin x,)(o, cos & — o, sin &) (161a)
x; = 31 — ¢,) g7B (161b)

Using the representation of the Pauli matrices (157), S; assumes the explicit
form

cos x (sin x) e‘”*) (162) -

Silg) = (~—(sin x) ei® cos x

If a point ¢ is not marked, ¢, = 1, so x, = 0. In that case, (162) shows that
S, for an unmarked point is unity. For a marked puint, ¢, = —1, x, = grB.

822/4/2/3-6
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Defining
A = sin*( g7B), AL? = sin( grB) (163)

It is seen that S for a marked point has the form

(1 —_ )\)1/‘2 Al/'le—ia )

— 22 (1 — L2 (164)

s-
A glance at (63d) shows that this is precisely the time-evolution operator
which the model rules required. The phase v is just the angle —a which the
line of motion makes with the x axis. If the motion of the particle is along the
x axis, the phase disappears and S assumes the form used throughout this
paper.

The physical picture which emerges is one where a particle of spin }.
with a given initial spin, moves through a medium. At certain locations, there
are ferromagnetic impurities producing local magnetic fields. These fields
(in the xy plane) will produce changes in the spin state of the particle. If the
initial state was assumed to be an eigenstate of the = component of the spin,
the new state will no longer be an eigenstate of the = component, since the
time-gvolution operator contains the x and y components, One can compute
and discuss the average of the spin in the z direction. The precise corres-
pondence between model and example identifies the color eigenstates of the
balls with the spin eigenstates of the particles; the markers correspond to
local magnetic fields producing transitions; averaging over the markers
corresponds to an average over all impurity locations. The approach to the
color equilibrium is replaced by the depolarization of an initial beam of
polarized particles. The most concrete physical picture which realizes this
model is the depolarization of an initially polarized beam of neiitrons which
travels through a medium containing ferromagnetic impurities. The neutrons
can be magnetically scattered. The time dependence of the polarization
corresponds to the average number of balls of one color and requires the
one-particle density matrix {p,».. Spin-spin correlation functions would
require a knowledge of 7p,". . One of the advantages of the magnetic version
of the model is that it now becomes possible to introduce external fields in
anatural way. A simple way to do this is to consider, instead of the field (158),
which represented the internal field, a new field

B, = (1 — <)) Bleg X e] + Foe, (163)

This clearly presents an additional field in the = direction. The new interaction
energy is obtained in the obvious way: the magnetic part of the time evolution
operator can be ‘written (for a time interval 7) as

S = exp{i[x(e, cos & — o, sin &) + yo.]} (166a)
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Here. x is the same as before3!
x=x, =}l — ¢) grB, (166b)
y =y, = g7F, (166¢)

It is again possible, using the properties of the Pauli matrices, to write S as
a 2 X 2 matrix similar to (161a):

S == cos r -~ i(sin r)[(x/r)}(c, cos & — o, sin a) - (¥/r) o]

= grifl(l — & B* + F?]

(167)

[

r

Since all the essential physical features are already contained in the special
case that « = 0, this will be assumed.

Consider S for the case that ¢, = 1, i.e., there is no local field. In the
previous case, S = 1 if ¢, = 1. In the present case, use of the explicit form

of the Pauli matrices gives S. = S, (¢, = —1):
fei!/—rF 0 R ‘ ‘
S.=0y C,,m} (16%)

Thus the time development from a location without internal field is described
by (168). The states do not remair unchanged under the action of S_ . but
eigenstates remain eigenstate states. If

N =0Ty G (169a)
Solmy = @ inTh + e g (169b)

the probability of finding the spin up is | ¢; {*in state | n): it is the same in the
state S, | »>. The relative phases are changed by S, . the probabilities are
not. Hence the original model rule which required that the relative proba-
bilities. for spins up or down, shall remain unchanged when spins move’
through an unmarked point (a point where there is no interaction) is sull
satisfied. This same rule is still valid when there is an additional cuside
field Fe; . If point ¢ does possess a local field,

x = gBr (170a)
y = gFr (170b)
P2 = x2 4 y? = g:%(B? - F?) (170¢)

Y £ _fn_F

sing =7 = TR = B (1 oV ) (170d)

3¢ Although x, y, B, and F all could depend on g (x always depends on g), the g index is
often suppressed.
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(170d) defines ¢ (the expansion is appropriate if the external field F is small
compared to the internal field; it is obviously an expansion in powers of
F/B).

It is straightforward to obtain the transition matrix S_ = S(e, = —1)
from (167) and (170a—d). The result can be written as '

cosr--isin@sinr cosg sin ) (71

S_=( . psin s
—CO0S QDSIDI‘ cosr — lSll'l@Sln F

This is the form for the transition matrix if an outside field F is present. It
should be contrasted with (162), which. written for the case o = 0. i

COSX  Sin .\')

. (172a)
~—sinx cosx

S(F=0)= t
Inthecase F =0,y = 0, ¢ = 0, and x = r; thus S_ reduces correctly to
S_(F = 0). The introduction of A** = sin x transforms S_(F = 0) into the
time-evolution matrix used throughout. If one introduces v == | — A, the
form of § becomes
Pt (] — )2

_(1 — V)l.’? p12

S{F=0) = { (172b)

The expression for S_with F == 0, Eq. (171). can be written in a very similor
form by introducing

% = cosr -+ isin gsinr (173)

_In terms of w. which is obviously complex, (171) can be written as

S_(F)= ( ut'? (1 — . u ‘,)1,2)

(1 — Ty e (1%)1:2 (174)
It is clear that this matrix describes the same kind of process; S_(F) acting.
on a spin eigenstate yields a state which will be a mixture. The probability
that no changs has taken place is given by - w : (this correspondstov = | — A
in the case where F' = 0). The total time evolution is the result of many such
actions. The explicit solubility of the F = 0 models depended on the fact that
the S_(F = 0) matrix could be diagonalized by a matrix ' which was
independent of A (or v). Hence the action of many S_(F = 0) operators led
to a power of a single matrix. The diagonalization becomes a good deal
more invoived for the case where S is given by (174).33

3 The projection techniques developed in a different context™® allow an explicit solution
of this case as well. The results are contained in a forthcoming publication.
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It is clear. however, that the formalism given immediately suggests an
approximation procedure in terms of powers of B/F. The matrix S_ can be
expanded as a sum of matrices, assuming ¢ is small. Ordinary perturbation
calculus can then be employed to obtain the rgsponse of the system to outside
fields. Thus apart from providing an interesting example of the models, the
magnetic realization also points to natural and hopefully useful extensions
and modifications

7. COMPARISON OF THE RESULTS; CONCLUSION

7.1. General Remarks

The study presented in this paper dealt with various different ways of
describing a particular model. In these discussions. the relationship between
the different treatments is always of considerable importance. All the
appraoches are designed to calculate the same physical quantities; since all
led to equations which could be explicitly and rigorously solved. a direct
comparison bec omes possible. It s instructive to consider & few simple vases
in some detail. It should be recalled that the descriptions are on the classical
master level, described by (normalized) functions F X 1) F2(x B0
Alternately, there is the classical Liouville level e-averaged. w hose functions
are denoted by f,Hx, 1) . {f7 (~ Bot) .. On either level. one can have
a stochastic element A in the description: this A is usually written near the
formula. In the quantum case, there are again the master level functons
g,(n’.t) and the Liouville level characterized by {p{p} . zmd “pg. p.t,
To make the discussion concrete, hwo special problems will be conside lcd
on all levels.

Assume that the initial state (r = 0) is a state where all the spins® are
in -z eigenstates. (In the color language, all objects are known with certainty
to have the same color.) The questions to be considered are as follows:

I. What is the probability that at time 7. the spin at p s in the =
direction ?

2. What is the probability that at time ¢, the spin at p and the spin at ¢
are both in the +—z direction ?

Since the classical functions are already normalized, these are proba-
bilities; hence question 1 requires the knowledge of F, (1, t) on the master
level and <f,X(1,7) . on the Liouville level. Recall that the values of the

3 In this section, the model language and the language of the magnetic example will be
used interchangeably.
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classical variables indicate the color. The fact that the initial color was with
certainty 1 is expressed by '
F1,0) =1 (175a)

CHLML 0 =1 (175b)

In the quantum case, probabilities are the matrix elements of the density
matrix. Denote the color eigenstate by ; 1); then the probability that at time 1,
the color at p is ; 1D is determined by

<1 }Pl(P; t)l 1>e (176‘1)

In the master formulation, this same probability is given by ¢ (3, = 1 1)
The determination of the joint probabilities needed in question 2 demands a
knowledge of the two-particle functions. On the master level, for example.
one needs F,f_ A1, 1, 1). The quantum discussion consists in the calculation of
&l | palg, p, 1)1 1 @ 1. Since the general form of these entities is known,
the detailed computation consists in evaluating these quantities for the
specified initial condition and giving the independent variables numerical
values, or calculating certain matrix elements.

7.2. The One-Particle Problem

The quantitv which is calculated throughout in this section i~ the
probability that at time ¢, the ball at p is white (x = 1), but this same physical
quantity is written in different ways, indicating the level of its calculation.
The relevant formulas are (18), (32b), (48b), (58a), (75b), (121), and (137).
The initial condition imposed yields for the classical coefficients [see (12)].

b, =12, p=1l..,n (176b)
The initial condition gives for the coefficients ¢ in (130b) the result
= &, p=1,.n (176¢)

With these coefficients, one obtains

FML) = 1§+ 31— 2 (177)
S0 =& + 1~ 2p) (178)
FAL ) =31+31 -2, A=l (179)
M, =32 31— 2w, A =1 (180)
Pi(n,t = L1} = § + (1 — 2Au) (181)

(L pu(pa D 1o = 3 + 3 Rell — 24 + 2iu(A — WU2F (182)
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Thus the one-particle probability distribution is the same for the classical
master and Liouville equations, as well as the quantum mechanical master
equation. The introduction of a stochastic element (A) does not change the
general character of the distribution function. In fact, the classical master
equation with a stochastic element is precisely the same as the quantum
master equation. The-distribution functions approach the equilibrium state
monotonically. The equilibrium state is a state where there are as many spins
up as down; the beam is depolarized.

Expression (182), which gives the same quantity derived from the
quantum Liouville equation, shows a drastically different behavior. 1t is still
true that as r - oo, the system approaches equilibrium. To see this explicitly.
write

I — 2ud 4+ 2ip(A — A2 = Rye'® (183a)
R2=1—4ur(l —p) (183b)
tan 8 = 2u(A — A1 — 2ud) (183¢c)

The probability (182) then becomes:
A lpdp DI = 5 + 3Ry cos 1f (184)

Itiseasy tocheck thatif 0 < p < 1and0 < A << 1. R’ < 1. Consequently
as t — oo, R,! — 0. hence the probability approaches { as r+ — . However,
the approach is oscillatory, the frequency of the equally spaced oscillations
is [see {(183a-c}] i

vo = (1/2m) tan=1[2u(A — A2 3(1 — 2p0)] (185)

The system exhibits an oscillatory approach to equilibrium. This is a rather
unusual phenomenon; it would mean, for example. that in the process of the
depolarization of a polarized beam of particles, the value of the polarization
would change from positive to negative and osciliate with decreasing
amplitude and frequency given by (183) around its equilibrium value. It is
clear that if any real significance can be attributed to this behavior, the master
equation description is totally inadequate. It does not contain any oscillations
at all. Presumably, the stochastic dynamical elements contained in the master
equation have averaged out the actual oscillatory character inherent in the
system. ’

It is interesting to observe how essential is the fact that A = [. It is
clear that if A = 1, v, = 0; furthermore, if A = 1. Eq. (182) reduces to the
classical expressions. Physically, A == 1 means that the action of an impurity
(a marker) on the spin states causes a spin eigenstate t0 go over in a super-
position of eigenstates, not a single one. If A were equal to 1, the state of the
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system at anv time would be a tensor product of pure spin eigenstates. The
fact that A = | is what causes the mixing of the states. Since it is known that
magnetic fields acting on spins do produce mixtures of ¢igenstates, it follows
that the model rules correct‘]y describe the quantum situation. For example.
such processes as magnetic depolarization should be described in this manner.
It further follows that the time evolution of such a process cannor be described
by a master equation.

Remark. There does not seem to exist a simple process which produces
.the master result from the Liouville equation. Simple averaging, for example.
does not eliminate the oscillations. The model rules do nor determine the
transition matrix S uniquely. but instead have a phase undetermined {sce
(63)d]. Thus it might appear that if one uses for S the’expression

(1 —_ ‘\)1 2 eivAl 2 )

‘—E—ivAl”z (1 . A)l";', (186)

5=

and averages the final observables over vy, the quantum mechanical
oscillations would indeed disappear.®™ This 1s a straightforward calculation
(patterned after Section 4.3); however, the oscillations do not disappear:
the final answer is again (182). This is phvsically to be expected from the
magnetic example. The phase in that example indicates the direction of the
trajectory in the xy plane. The magnetic field B is perpendicular to that line.
If the line changes its orientation. so does B: but B lies always (for amy )
in the xy plane; hence it is afways in a plane perpendicular to the direction
of the spin. The probability of a spin fiip produced by a field in a plane
perpendicular to the spin depends on the magnitude of the field, but not on
the orientation of the field vector in that plane. Hence. all angles vy in S
produce the same admixture of spin eigenstates. Averaging over the angle y
can then not have any effect. This is also shown by the expiicit calculation.

7.3. The Two-Particie Distribution Functions

The quantity calculated in this section is the probability that at time 1,
the spin at p is up and the spin at ¢ is also up. This is a joinr probability. The
necessary formulas are (19), (32¢), (56), (58b), (122), (137), (147), and (132).

As before, it is only necessary to evaluate the constants from the initial
data and substitute the values of the variables (in the classical case), or take
the matrix elements (in the quantum case), It should be mentioned that the

37 Jt is not uncommon that an averaging of quantum mechanical phases leads to a classical
result.
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coefficients 4, occurring in (19) and (32¢) ure by virtue of the initial
conditions given by

b,, = 1/27, g, p = l,.,n (187)

The results in the usual notation are
2 (L0 =1 30— 2+ 30— 2 (188)
i Lo, =1+ 3 = 2t M — 2u)%, 1 <<p—gq (189)

SR L =1 F W = 2t H = 2upPe, > p—g 0 (190)
F2 (1, 1ty = 1+ M1 — 2Aw)' — 31 — 2Ap)™ (191)

q,

Sl -2 M -2, rp—g (192)

e

2L L, =

AL LD =3+ 30 — 20w

L = 2RO [T — (] — N 1o p g
(1193)

\Iy i i /Y(Q>p> f)j 19 1/

= l.Re[(l — ;/,/12)2(”“'” (I — L M/p)t—pm

—(l —p=pd = 1 —p —,"lLL/IQ R e wod? 2]
: (194)

(\lr 1 ipZ(,Qa/}a l) l! 1
= TIXTLE = iplg, D DA fpulp ) 1 (195)
galny = Lo, = 1;0) = 1+ 3(1 — 2A4)" = 3(1 — 22)* (196)

These joint probabilities show a great deal more variety in behavior than the
single probabilities. Perhaps more important is the fact that the joint proba-
bilities give much more detailed information about the system than do the
single distribution functions. The master equations. both classical (188)
and gquantum mechanical (196), give, as always, the ordinary monotonic
approach to equilibrium. The agreement between the classical Liouville
equation and the classical master equation holds only for limited times?®
t < p— q [see (189) and (190)]. Particularly noteworthy and new is the
existence of persistent correlations as ¢ — oo:

oL LD, — 3+ K1 = 2020

One would expect naively that f? approaches 1. It is interesting that the intro-
duction of a classical stochastic element leads to Eq. (193) for f2 which,

% It is interesting to note that these times of agreement get longer as the spins involved
are farther apart.
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although distinct from F2, has at least the good taste to go to equilibrium as
t — =c. Apparently the continued operation of the stochastic dynamics
destroys the correlations, The quantum expression shows oscillations, as
before; however, there are persistent correlations as w;]l. Because of the
presence of two different terms, (1 — p + p4?) and (I — p + p?), the time
development of <I,1,|X i1, 1> contains two distinct frequencies. The
detailed analysis of Eq. (194) shows that there are beat frequencies as well.
Both terms mentioned are less than one; this allows the long-time limit to be
obtained rather easily. One finds )

lim <1, 1] polg, p, i 1, 1 = § + 31 — 4Au(l — )] (197)

This is the remaining persistent correlation. In the case A =.1. Eq. (197)
reduces to the classical result given in (190). Even so, it is somewhat surprising
that the introduction of a classical stochastic element such as A eliminates the
persistent correlation giving f2 a reasonable asymptotic behavior, while the
quantum mechanical problem with A == 1 still has a persistent correlation.
This may seem strange in view of the comments made in connection with the
classical case: The persistent correlations are destroyed by the continued
operation of a stochastic element, as (193) shows explicitly. The explanation,
which contains the essence of the difference between the classical and quantum
descriptions, lies in the fact that in the quantum model with A = [, the
dynamics as such does not contain any stochastic elements. There is a well-
defined Hamiltonian and A is determined by the system. In the magnetic
example, A is determined by the field: A = sin*(g7B). The interaction is given
and fixed. The problem is an .ordinary quantum mechanical problem.
where probability notions enter solely through the interpretation of the state
vector; the dvnamics does not contain probability aspects. This system
described on the Liouville level leads to persistent correlations, as Eq. (197)
shows. This is to be contrasted with the classical (A = 1) case. where the
interaction contains the stochastic features; the states do not have any
probability aspects. It is understandable that such a system would not possess
any persistent correlations. Summarizing. one can say that probabilistic
elements in the dynamics lead to the destruction of persistent correlation:
pure dynamics in either the quantum or classical domain can lead to situations
in which correlations persist for all time.

8. FINAL REMARKS

(a) The most striking phenomena exhibited by these models are (1) the
occurrence of persistence correlation, and (2) an oscillatory approach to
equilibrium,
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The first-mentioned behavior means in particular that these systems, in
their time behavior, do not approach the -obvious”™ thermodynamic
equilibrium state as 7 — oo. The time limit does exist, but the state reached
in time has rather unexpected and unintuitive properties [Eq. (197)].

The second type of behavior is perhaps a little less strange, but even so,
the monotonic approach to equilibrium is often taken for granted. In fact,
any discussion in which a relaxation time is assumed to exist presupposes
this monotonic approach. Thus any system which does not exhibit the
monotonic approach is worth investigating in detail.

Both behaviors 1 and 2 are incompatible with a master equation
description. The models therefore provide specific examples of systems whose
time behavior cannot be described and not even approximated by a master
equation,

As in any study of models, there is always the nagging concern that the
unusual phenomena studied are features of the special and contrived model
and have no validity or significance beyond the confines of this artificial
model. Stated less generously, the model is bad. For this reason. it would be
extremely interesting il neutron depolarization experiments {or related spin
echo experiments) could actually show examples of the oscillatory approach to
equilibrium. It is believed that this oscillatory approach can and does occur
in a variety of circumstances, but a precise characterization of a system
exhibiting this behavior is still lacking.

(b) Several modifications and extensions of the models are possible:
some may be useful. One could introduce a location-dependent interaction
(as was done in Section 3): A, = A, + g, . Considering g, as a perturbing
external field allows both an exact and an approximate calculation to be
performed. In this manner. one can—for these models, in any case—obtain
a check on the validity of the Kubo formula. It would also be very interesting
to construct a model in which the dependence on the density is less trivial.
than the dependence-on p in the ones considered. There are several ways of
doing this: one could consider a model where the probability of a spin change
would depend on the spin state of the neighbors. This would at the same time
introduce interactions, a more complicated density dependence. and would
yield a nonlinear model. Some of these models are still soluble.

(c) A variety of other modifications are possible. Instead of dealing with
particles of spin %, one could consider particles of spin s. The appropriate
values of the € variables then would be the 25 - 1 roots of unity. One can also
alter the model rules so that the resulting system simulates a hysteresis-type
behavior. Many other possibilities are open.

(d) The final utility of models is of course determined by the insight and
knowledge they provide about realistic systems. One interesting possibility
which is under active study is to see whether one can set up inequalities or
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“comparison theorems™ which relate real systems and models. An example™
would be a result showing that the susceptibility of a real three-dimensional
system (with interactions between the constituents specified by a potential 1)
is always larger then, say, the product of the susceptibilities of three one-
dimensional chains, each with a constant interaction given by the maximum
of V. Thus the purpose would be to bound the physical characteristics of
realistic systems (which of course cannot be computed) by those of models
{which can be computed). If this program can ever be carried out. the models
constructed here might give useful insights into the nonequilibrium behavior
of quantum systems.

(e) This model differs from other exactly soluble models in severul
respects: (1) The model possesses both classical and quantum mechanical
versions. (2) The master and Liouville equations can both be exactly soived.
(3) Comparisons can be explicitly carried out between classical models with
explicit stochastic elements and quantum systems.

Models investigated by other authors demonstrate some, but generally
not all. of these features.

For example. Barouch et ¢l.® solve the Liouville equation for the V'Y
model in a homogeneous, time-dependent magnetic field. It was found in the
thermodynamic limit that the limit of the magnetization as 1 — oo is finite:
but the svstem does not approach a thermal equilibrium state. The master
equation was not studied for this model. Abraham ei al.* studied the VY
model where for 7 2 0. the system is in thermal equilibrium with a magnetic
field acting on just a single spin. The magnetic field s now remosed and the
time evolution of the system is determined via the Liouville equation. The
magnetization of the system now relaxes to its new equilibrium.

The first demonstration of the oscillatory approach to equilibrium for
this model was given by Dresden.®! Oscillatory behavior in the time
evolution of spin systems was found by Walgraef and Borchmans.® These
authors used a weak coupling expansion of the Livuville cquation, basing
their considerations on the Prigogine formalism.'

The system described here is (as the magnetic example suggests) closels
related to the behavior of a two-level atom in an exiernal field. The Licuville
equation for this case was discussed by Muriel.©

The relationship and validity of the master equation is of special interest
in the study of spontaneous emission of N two-level atoms (which itself is
useful for the description of lasers). A master-type equation was employed
for this purpose by Agarwal.®¥ Since the system described is a good deal
more complex than that described here. the Liouville equation was not
investigated. It would be interesting to see whether the techniques of this

3 This is a pretty crazy example.
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paper could be used to handle a more realistic and therefore more interesting
physical situation. The limits of the validity of the master equation desuxpnon
of lasers would be particularly useful. :
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