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In this paper, quantum versions of statistical models are constructed. All 
aspects of the systems can be expiicitly solved, it L, possibIe to gixe magi;eric 
realizations of these models. The most interesting conclusions arc: (i~ tb.c 
state for time going to infinity is approached in an oscillatory manner m tl-,e 
quantum case; (2) in both classical and quantum cases, the exact description 
gives limiting states which remember the initial specifications; and (3) in 
these modeg, the time evolution generally cannot be described, even 
approximately, by a master equation. 
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1. B A C K G R O U N D  A N D  M O T I V A T I O N  

A few years  ago ,  a stuvty was pub l i shed  ~i~ in which  several  mode l s  devi.~ed 

by K a c  ~2) were  inves t iga ted .  T h e  p u r p o s e  o f  this s tudy  was to  clarify'  a n d  

d iscuss  s o m e  o ld  a n d  f u n d a m e n t a l  quest ior is  in n o n e q u i l i b r i u m  classical 

s ta t i s t ica l  m e c h a n i c s ,  us ing  the  K a c  m o d e l s  as examples .  T h e  prec ise  p o i n t  

a t  issue was the r e l a t i on  b e t w e e n  the  L iouv i l l e  e q u a t i o n  a n d  the m a s t e r  

e q u a t i o n .  In  the  L i o u v i l l e - t y p e  desc r ip t ion ,  the  sys tem is desc r ibed  by a phase-  
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space density function P(Plql ..... P.vq~, t) which ,satislies the Liouville 
equation. Macroscopic quantities of physical interest are obtained by some 
appropriate averaging. The time evolution is treated according to the precise 
dynamics without invoking any probability or statistical notions. 

The master equation method describes the system by the master  
probability function W(plq~ ..... Pxq.v, t). The time evolution of the master 
function is given in terms of a basic transition probability. This transition 
probability simulates the exact dynamics of the system. Thus the time 
evolution in the master equation approach does contain stochastic elements, 
in contrast to the Liouville method. The general relation bet~een the kiouville 
equation and the master equation has been extensively discussed. ~a-(u The 
special feature of  the models discussed '1' previously is that both the master 
equation and the Liouville equation could be solved exacfl)', so that a direct 
comparison between the two treatments could be made. The somewhat 
surprising result obtained was that these two methods in general do ~Tot give 
the same results.To be sure, for special initial states, for limited time intervals, 
or for descriptions of  limited accuracy, the resul tsdo coincide, but this is not 
the general situation. These models therefore demonstrate explicit] 3, that there 
exist models (and presumably physical situations) whose time evolution can 
not be  described by the usual, convenient master equation, but instead must 
be described by the Liouville formalism. Ahhough this result is not altogether 
unexpected, there are very few explicit examples illustrating this behavior  

In this paper, a similar discussion of a quantl, m mechanical modit~cation 
of these models will be presented. Since it i~ not at all obviou~ that the result,, 
obtained from a study of such contrived models (either.classical or quantum 
mechanical) are particularly pertinent to or relevant for the description or 
realistic physical systems, it may be of interest to enumerate some of the 
reasons for undertaking such an investigation. 

(a) It was already noted that the Kac models are some of  the very few 
systems for which both the Liouxille and master equations can be exactly 
and explicitly solved. There does not appear to be any quantum mechanical 
System allowing a similar detailed treatment, a The models constructed here 
are desigened to provide examples of  such systems. Thus it is possible to test 
whether the introduction of quantum notions alters the relationship between 
the master equation and the Liouville equation, or whether that classical 
relationship is effectively unchanged. The relation is altered, 

a It should be noted that there are a number of interesting exactly soluble quantum statistic- 
al models (compare Lieb ~:~ and Yang~S'); but all these models deal with equilibrium 
phenomena, while the present study is concerned with-nonequilibrium properties. In a 
recent study, ~9~ the Liouville equation for the X Y  model was exactly solved, but no 
comparison with the master equation was undertaken. 
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(b) There are many inv.estigations ~4.~~ which study the circums.:ances 
under which the quantum mechanical master equation (usually called the 
Pauli equation) can be obtained from the quantum mech'anical kiouville 
equation (which is just the equation of motion of the density matrix). In this 
reduction, many approximations have to be made. Having exactly soluble 
models available allows a concrete discussion of  the validity of these 
procedures. Thus in these models, it is possible to assess the error made when" 
the exact description is replaced by a quantum mechanical master or Pauli 
equation. In addition, having explicit expressions for the exact solution~ of" 
both the Liouville and master equations enables one to study the relationships 
between the solutions as well as those between the equations. This, of course. 
is impossible in more realistic circumstances, where only approximate  
solutions of both equations are known. 

(c) It is, of  course, well known that the use of" probability in classical 
physics is quite distinct from its use in quantum mechanics. In particular, a 
classical system in which interactions take place with a prescribed probability 
is intrinsically different from a quantum system. The models constructed in 
this paper demonstrate this difference in an almost dramatic manner. -ks 
such, they provide instructive and transparent examples of the differe~.t role~ 
probability notions play in classical and quantum situations. 

(d) The classical Kac models describe highly artificial and contrixed 
physical situations. They deal with objects (called either balls or particles) 
which are capable of just two states, or two colors. The only dynamica! 
element introduced is the possibility of a change of color at well-defined, 
fixed locations. The underlying physical picture suggesting this model is 
a beam of particles all moving in the same direction with the same speed, 
which can scatter elastically from a number of fixed obstacles. The obstacles 
are so arranged that the particles either continue or reverse their velocities. 
The two colors of the objects in the model correspond obviously to the two 
directions of the particle velocity. In a more realistic picture, the scattering 
(still elastic)" could produce velocities in any direction (still with the same 
magnitude), which in the model language would correspond to balls capable 
of a continuum of colors. Thus the restriction to just two colors is o~er- 
simplified and artificial. However, in a quantum mechanical context, it is 
not at all unusual to deal with observables which are capable of just two 

quantum states. A system of particles of spin -~- (or isotopic spin �89 is an 
obvious example. In fact, any system composed of objects that are capable 
of two quantum states, provided with a suitable mechanism which can 
produce transitions between these quantum states a t  definite locations, is a 
perfectly good example of a quantum Kac model. The fact that 
all the physically interesting realizations of the Kac models involve 
quantum mechanics in an essential manner was one of the main reasons 

8221M~/3-3 
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for investigating possible quantum modification~ of these models. It.  
is interesting that even though the original motivation for these models came 
from classical physics, the quantum mechanical extensions actually describe 
more realistic physical situations. 

(e) Another, rather different'reason for a restudy of the Kac models 
(and possible extensions) is the somewhat unsettled status of nonequilibrium 
statistical mechanics. It has been repeatedly emphasized ~t4) that the 
calculation of experimentally observable entities (such as transport 
coemcients) from the basic equations (such as the Liouvilte equation) is far 
from straightforward. It is now known through the work of Cohen and 
Dorfman ~ Kawasaki and Oppenheim, (~") Sengers, ~m and Ernst? xs) among 
others, that there occur divergences in the density expansion of the transport 
coefficients. These divergences and the related nonanalytic density dependence 
follow via a lengthy but well-defined procedure from the Liouville equation. 
The same results are obtained if the Kubo formula is used (~5,m for the 
calculation of the transport coefficients. Because of the unexpected and 
unintuitive character of these results, it would be extremely interesting if one 
could construct models which would elucidate some features of this surprising 
behavior. UnfortunateIy, the Kac models do not possess sL~fficient dynamic 
and geometric complexity to exhibit the divergence phenomenon. In fact. 
the models discussed previously were even too simple to define entities which 
could be considered as analogs of the transport parameters. In the process 
or constructing quantum models, it will be necessary to first construct 
classical models which possesses more structure than the previous oneb. 
For ~hese models, one can obtain a nontrivial response to an outside field. 
Thus in this case, an appropriate modification of the Kubo formula can be 
constructed. One has the possibility of obtaining transport-like parameters 
and it is possible to study density-like expansions. Even for these very simple 
models, the actual analysis is already involved; one of" the main conclusions 
is that rather trivial and reasonable appearing assumptions about the initial 
state, and especially about the asymptotic time behavior, have "an enormous 
effect on the existence and character of the expansions of the transport 
parameters, interesting as this is, these aspects of the models are merely 
suggestive at this point; the main purpose of this paper is to study, using the 
models, the equivalence and relevance (or nonequivalence and lack of 
relevance) of the methods used in nonequilibrium quantum statistical 
mechanics. In a later study, the significance of models for the divergence 
problems will be treated in detail. 

The paper is divided into seven sections. Section 2 contains a brief 
recapitulation of the notations and results of the classical discussion. ~' 
The succeeding section contains a modification of the classical models which 
consists in the introduction of a classical stochastic element in the dynamics. 
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This modification is useful both as a preliminary to the qmmtum extension 
and as a means to introduce an additional parameter ill the problem. It i~ 
this new parameter which later allows the construction of transport quantities. 
The appropriate modifications of the model rules, which would yield a 
genuine quantum system are developed in a heuristic fashlon in section 4. 
The main point is the recognition that in terms of the highly schematized 
dynamics of the model, the only remaining quantum mechanical feature is 
the superposition principle. Section 4 also contains the calculation of the one- 
particle (quantum) distribution function. The general formalism is set up 
in Section 5. The Liouville and master equations are obtained: contracted 
distribution functions and reduced density matrices are defined. It is possible 
--in principle, in any case--to obtain exact expression For el//the reduced 
matrices. An explicit expression will be derived for the two-particle densi ty  
matrix. Section 6 contains a discussion for the results obtained in particular 
comparisons of the answers obtained by the different methods. The main 
qualitative result is that the differences between the master equation and the 
Liouville equation are m o r e  pronounced in the quantum discussion than in 
the classical model. Using these exact rest:Its, it is also possible to inve~tig:t~e 
which of the assumption needed ~1~ in the general reduction oi" tt~e Liou',illc 
equation to the master equation are applicable in this case. 

It is demonstrated in Section 7 that a more or less realistic physical model 
provides an interesting realization of this quantum model. A polarized beam 
of particles with spin I which are scattered by randoni l'erromagnetic 
impurities (so they can flip the spin) located in a plane perpendicular to the 
plane of polarization is an example of a physical system which is exactly 
described by the model rules. Actual}y, the precise system consists of a number 
of independent beams.all polarized in the same way. The "magnetic" example 
also allows the introduction o f  "outside" magnetic fields in a natural wa.x. 
Thus the stage is set for a study o f  the "response" of this magnetic svstem 
to arbitrary outside fields, and with it. the calculation of the magnetic 
transport parameters. The dependence of these parameters on the de:~sit3 
can now be investigated. 

The final section contains a number ofdisconnected  con{ments and 
remarks. Applications of the general formalism to other physical systems, 
such as the KK meson system, are briefly indicated. The possibility and utility 
of the extension of the formalism to systems capable of more than two 
quantum state's are discussed. Further generalizations and especially the 
possibility of using these models to investigate density and other (b~) 
expansions are noted. Finally. there is a summary of the main results 
and a collection and assessment of the unsolved and partiall} solxed 
problems. 
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2. C L A S S I C A L  M O D E L S ;  B A C K G R O U N D  A N D  C O M M E N T S  

The primitive dynamics embodied in the simple systems studied here 
can most conveniently be expressed in the language of a model. Consider a 
set or" n equidistant points on a circle. A set of n objects (balls, for example) 
is placed on the n points. These balls can have two colors, black or white. 
A set of  m fixed points (nl <~ n) on the circle are marked. The fraction of the 
marked points is/ ,  = m/n ~ 1. During each elementary time interval, all the 
balls move one step counterclockwise with the rule that when a ball h'aces 
a rnarker, it will change its color. If the initial color distribution and some- 
thing about  the marker  distribution are given, the problem is the description 
of the time evolution of the color scheme. This is the classical problem 
discussed by Dresden. ~ Actually, the problem treated there in greatest 
detail was a slight modification of the situation described here; instead of 
one Kac ring. 4 an ensemble of such rings was considered. Each ring contains 
a well-defined set (both in number and location.) of markers. The ensemble 
average of the number of  markers at a given place over the ensemble of rings 
is/x. If the initial color scheme of the ensemble is given, the problem is again 
the description o~ the various aspect.,, of" the time evolution of tlne color 
scheme. 

This general type of problem can be discussed on a variety of levels. 
which may be described as the Newton. Liouvitle. master, and Boltzmann 
level, respectively. ~ 

2.1. The  " N e w t o n i a n "  Level 

On this level, one deals with well-defined mechanical equations, their 
analysis, and consequences,. No statistics or probability is used anywhere. 

The following notation is used: 

% = I +1  
--1 

%(t )  = ! _  1 

if the point p is unmarked (p = 1 ..... t7) (1) 
if the point p is marked 

if the ball at p at time t is white 
if the ball at p at time t is black (2) 

The variables r/~(t) change in time; the}' are the dynamical variables of the 
system; the set of  {%} characterizes the location and number of interactions, 
and it, in a certain sense, represents the Hamiltonian of the system [of 

4 The model described here is often referred to as "Kac ring," after its originator. 
5 This is a convenient and suggestive nomenclature which will be used throughout this 

paper. 
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-,),l 
Eqs. (2t) and (_a)J. The model rules may be summarized as an cquation of 
motion for a single object, 

~2,+1(t + 1) = ~ , , ( ~ )  (3) 

Equation (3) ("Newton's equation of motion") yields the expression for 
any r/~(t) for allp and t in terms of the initial state as 

% ( 0  = e~_1%_,_ "'" %_t~/,_l(O) (4) 

From Eq. (4), all quantities referring to a single ring can be calculated; for 
example, the number of white balls at any time is 

N,,(t) = ~/~ ~ ~ ~ ~,(t) (5) 
p = l  

with ~7,,(t) determined by Eq. (4). 
It is clear from these formulas that all results depend explicitly on the 

set {e}, as could be anticipated from Eq. (3). Thus these formulas [Eq. (4) 
in particular] provide the solution to the mechanical problem: no statistical 
or probability notions or averaging processes are needed or used. If. however. 
the set of {e} is not or only partially given, or if the initial state itself is only 
given in a probability sense, statistical methods are needed to obtain resk~its 
of physical interest. This is accomplished by representing the actua! s vstenn 
by an appropriate ensemble, and this leads to the Liouville level. 

2.2. The Liouville Level of Description 

The state of a single Kac ring at a given time is completely specified 
by the set o f n  numbers / ~l(t) ) 

n(t) = ~ ~.:(t) (6) 

\ v.(t) / 

The rh(t ) values are either _ 1 or -- 1. The phase space _P of this dynamical 
system is thus the space of 2" sequences, each sequence consisting of  ( +  1) 
and (-- 1), n in all. Consider now an ensemble of Kac rings; then the state 
of the ensemble is described by a density function O(rh "'" r~,, t); p is a non- 
negative function defined on the space of sequences / ' ;  p is normalized to 
unity: 

�9 " 2 p ( r / 1  " r / z , t )  = 1 (7) 

Each member of the ensemble is a Kac ring with a definite number and 

a definite location of the markers; however, both may vary from ring to ring. 
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The ensemble is specified by the requirement  that  tile probabil i ty that  there 
is a marker  at a given point j shall be/x,  which is independent  o f j  and n. 
This expresses in a more  precise manne r  that  for an individual  ring, the 
fract ion of  the marked  points is/x. In terms of  the E variables,  the specification 

"of the ensemble ~s 

Prob(~j = - -1 )  = / z  (Sa) 

Prob(~j = + 1 )  = 1 - - / z  (8b) 

Equat ions  (8a) and (8b) can be combined  as 

Prob(E) = -~- § �89 - -  2 /z) ,  (8c) 

F rom Eqs. (8a-c),  it follows immediate ly  that  

Prob(E;~k) = (Prob E~)(Prob E~.) ( S d )  

The ensemble average (or �9 average) of  a quant i ty  Q which depends  on the E 
variables is defined as 

<Q>, "= ~ --. y, P r o b ( q  ..- %) O ( q  ... e,,) (8e) 

This represents the result o f  averaging a physical quant i ty  Q over all 
m a rke r  positions. The set of  markers  itself is specified by the formulas  (Sa) 
and (8b). The average of  �9 is given by Eq. (8e) as 

' I f  = Y~�9 = 1 --  2? Sft 
E 

The average of  products  is obta ined by combining  Eqs. (8f) and (8d), 

( E  1 , E 2 . . . .  , E,), = (1 - -  2/z)* (Sg) 

The mot ion  of  the balls on a given ring is still described by Eq. (3}: this 
yields for the t ime evolution of the ensemble dens!ty function 

P('ql ..... "0.,, , t + l )  = p ( q %  , %ria . . . .  , �9 h , t )  ( 9 )  

Equat ion  (,9) is the Liouvil!e equat ion for  the model.  As in ordinary .s ta tb t ica l  
mechanics,  it is useful to introduce c o n t r a c t e d d i s t r i b u t i o n  funct ions defined by 6 

f i fcq t) = 2 "'" ~ P(~)I ... ~7~ = %-.., "q,,, t) (lOa) 
771 ~ n  

f ~ % x ,  fi, t)  = ~ . . ' .  ~ p(... rl, ----- ~,.. . ,  ~?k = t ~ ..... t)  (lOb) 

o, 

Strictly speaking, one should write ftJ(a, t), f~'(~, #, t), indicating the one-, two-. .... 
particle character of these functions. The notation used should hopefully be clear enough. 
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Note t h a t f f ( x ,  t) andf~%-~, fl, t) are normalized by' Eq. (7} 

~ f J ( ' ~ , t )  = 1, ~_f~z(:~,fi,  t)  = I (/0c) 
:L ~.f3 

[In (10a), one does not sum over r h ; it has a specified value ~; in (10b), one 
does not sum over  r h and  r/k, etc.] 

These contracted distribution functions satisfy equat ions ~ which can be 
obtained by combining  (9) and (10): 

f~(c~, t) = ff-~(e~-z'-~, t - -  1) (1 la) 

ff~(~, fl, t) = ff-~.k-~(e~_~, e,,_~, ~ -- 1) ( l l b )  

Equat ions (9) and (11) show explicitly that  the t ime  evoiution of  the 
system is determined by the set {e}; no stochastic elements  are involved in 
the dynamical  description of  the system. This can also be seen f rom the 
solutions of  Eqs. (9) and (11). Suppose that  p(n, 0), the initial density function.  
is given in terms of  a set of  coefficients b as 

p~n,  o )  - g ( n )  = (I,,2,,) = 2 b,Tj,,: =- 2 z~,,c,j,.~j, . . .  

k l; 

Then the solution becomes 

p(~, t) = (1/2'9 -? ~ bl.ez.et.,~1 "'" e1.L~-?t,,.-; 

,-l- ~ bk~% "" ek;~-lez "'" ez+~_~+~+~ + "'" (~3) 

f;(~x, t) = -~ ~- 2'~-l~b~_te~_~ "-  e,-1 (14) 

]~';( ~, 5 ,  t )  = I -~ 2 ~ - 2 ( b ~ - ~ J - ,  ' < - ~  - ;  b , _ ~ . , _ ,  " .  

-:- b~_~.~_t.~fie~-i "" ~:_Ie,_i ' "  -~,-) (15) 

These formulas  exhibit the dependence of  the various distr ibution 
functions on the initial configurat ion (the b's) and the dynamics  (the e~s). 
I f  these are given, there just  remains  the analysis o f  the expressions (13)-(15). 
In m a n y  actual  situations, however,  the E's (or the b's) are not known as such. 
but instead, a probabi l i ty  distr ibution of  these variables is given. For  example,  
the probabil i ty  distribution (8) of  the e variables corresponds  tO the physical 
situation where markers  are distributed over a Kac ring with all marker  
configurat ions equally likely, so that  the average number  of  markers  is W~. 

7 The functions p,f; , f f  ~, etc. will be referred to as the "Liouville hierarchy." 
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To obta in  physical  results for that  case. one must average the expression~ 
for p.f;, fJJ~,. . ,  over all rnarker  conf igurat ions .  Defining as before 

.{Q)~ = ~ .-. ~ P r o b ( q  ... e,,) Q ( q  .-. E,,) t16) 
El ~n 

one finds s 

(p(n,  t))., = (1/2 ~) -+- ~ b,,:(1 - -  2/~) t "O,,.., 
k 

bl~z(1 - -  2~L) zll'~''tl "Oj,-t~?~ .~ - . . . .  17) 
I,' < 1 

~i fJ(:~, t))~ = :.,_ § 2 ''-x bs_~(1 --  2/x) ~ 18) 

~fJ~(~, fi, t);:., = ~ =- 2"-a[(1 - -  2/~) t (~bj_t + fib,._,) 

-+- (1 - -  2,a) "~(J,z',~ b;_;.1.._~] 19) 

A ( j ,  k, t) = ~2t, j - -  k ):  t 
f2(j - -  k ) ,  j - -  k < t ( 20 )  

These results no longer  depend on the e var iables ;  the5 represent  a;cr~ge~, 
over  all the m a r k e r  conf igura t ions  of  the exact  dynamics  of  the system. It is 
th rough  the e-averaging process tha t  nonmechan ica l  or  s tochast ic  e lements  
enter  the descr ipt ion.  Fo r  many .phys ica l  s i tuat ions.  (for example ,  in impurit~ 
scat ter ing,  where the loca t ion  of  the impur i tes  is not kno~lq) SLlCh a', eragcd 
quant i t ies  are  jus t  the ones needed for the physical  descr ipt ion.  

To emphas ize  fur ther  the mechanica l  na tu re  o f  the Liouvi l le  equat ion .  
it is instruct ive to in t roduce  the Hami l ton ian  matr ix  H ~hich  governs the 
dynamics .  Define the mat r ix  H by 

E,) 

H : (21) 

. % ~ - - 1  

It is easy to check tha t  H has the p rope r ty  

H = q.Va , H  ~ ~ ~ "" .~+~'~,-'_, (.,-~) 

e#q : / ]  \ "q'' / \ e~e: " '  e,,_:r/t / 

8 See especially Dresden ~z) for more details. 
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Thus H, acting on a state ~, yields, by Eqs. (22) and (9), the state t'rom ~ hich that 
atate came an elementary time earlier. As written, H propagates the system 
back  in time. The (anti) time-evolution operator H depends exclusively on 
the E variables, it is independent of  the time and the initial conditions. Both 
these features are typical of  mechanical time-evolution operators. In terms 
of H, the solution of the Liouville equation can be written in the compact  
form 

P(n, t) = p((H~n), 0) (_'> 

This gives the form (13)immediately. 
H has the further properties that 

H H  7 =  H T H  = 1 (24a) 

H 2 ~ :  1 (24b) 

Here, H r is the transpose of H; since the e's ate real, (24a) expresses the 
unitar~ty of H. Equation (24b) expresses the essential periodicity of the system, 
which can be observed directly from (22) and the fact that 

E 1 E 2  " ' "  ~ t f f t ~ I  "'" ~ t + i n  ~-- E1 ~'" f i t "  

Since H is unitary', its eigenvalues have absolute value l: from (24b). it 
follows further that the eigenvalues of H are e ~ ' ; ' ' ' , . / =  0 ..... '1 -- 1. Since 
H i s  unitary, it can be diagonalized by a unitary matrix U so that 

U H U  -1 = D (25) 

with D diagonal, with diagonal elements (e'~J/"). U depends on13 on {e', and i~. 
It  follows from (25) that the matrix H t which occurs in-the Liouvitle equation 
satisfies 

H t ~ -  U-1Dt~  7 (26a) 

Consequently, acting o~l a state, it yields 

(H~rl) = (26b) 

ynie'~iat/n / 

Here, the ya.j depend on the initial condition and the set {el, but nor on the 
time. The complete time dependence of (H~rl) is explicitly exhibited in (26b). 
The time dependence of p of proceeds via an analysis of (23), while the time 
dependence of (p}~ requires the ensemble average. 
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2.3. The  b las ter  Level 

Since the quantities of physical interest are usually ensemble averages. 
there is a considerable interest in setting up time-evolution equat ionswhich 
incorporate the probability aspects of the problem directly in the dynamics. 
The hope is that such equations will be simpler to solve and yet provide a 
reasonably accurate (if not exact) description of the averaged quantities of 
physical interest, thus avoiding the necessity of  solving the exact equations 
and averaging their solutions. Such kinetic or master equations play a 
significant role in all of statistical mechanics; the Boltzmann equation is 
perhaps the best-known example. 

In this model, the master equation requires the construction of a 
transition probability P(8 'n),which gives the probabilit3 that. given that 
the system is in state a, it will be in state ",'1 one elementary time interval later. 
With n and a fixed and given vectors, such a transition requires that 
rl:_~. = e:3: or e; = 3:Ts_z. For a given ring, i.e., a given set of  �9 variables, 
this relation is either true or false. If', however, the {e} are considered as 
random variables, the probability that ej = 8/r/.,. z is given by [see Eq. (8c)] 

Prob(e,. = (~J'~.)-l) = �89 '7- 1(1 - -  2/./,) 6 j~ . ;= l  ")'7 
( - , t  

Therefore the transition probability P(8 r]) is 

PcS ~ ) =  ~ . ' , [ I -  (l -2/,,)~5.~? .,] 
] = 1 

2~  

The master equation is defined by 

? ( n , t - -  1) = ~ P(8 n)r  t) (29; 
8 

I t  does not describe the time evolution o f a  single s vbtem, but it gi~e~ 
a stochastic representation of a time evolution in which the model rule> 
(ej = g,:9:-~) are satisfied in some average sense. It is :his feature x~ hich give~ 
rise ~.o the expectation that as tong as one is interested in ensemble averages 
(such as an average ove r  the markers), the master equation will give an 
adequate description. It is an important  aspect of the present studies to 
investigate to ~:hat extent these expectations are valid. 

Contracted distributions obtained from c F are defined as before 

F ( , ,  t.) = ~ ... y ,~I~,, ~., - - . ,  . . . .  > , .  : /  

"111 7~ 

(30al 

.F,.(,,/3,:)=E...E~(,~ ..... ,7,=, ..... ,7,=5 ..... ~,~,0 
:91 7/n 

(30b) 
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Equations (29) and (30) yield equat ions for F. which are the coun te rpa r t . o f  
(1 la),  

F;(_,, t) = .1, -5- ~(1 - -  2/*) c~ y" r/F:-~(r/, t - -  1) (31a) 

e,,,(~, 5, t)  = 1 + ~,(1 - 2~)I~ y~ rF~-~l r,  t --  1) 

+ fl ~ yFZ"-a(y, r - -  I )i t 

~', :~(1 - -  2/-,i)-' aft ~ yy 'F-~ .a -~(y ,  y ' ,  t --  1) (31b) 
5'"/" 

The Liouville hierarchy (9) and (10) could be rigorously solved with the initial 
condit ion p(n, 0) = g(71); the mas ter  equat ion hierarchy can also be exactly 
solved. Using the same initial condit ion q~(n, 0) = g(n) with g given by' (12) 
yields 

q~(n, t) = 2" + (1 - -  21,z) t E b~rh+* § (1 --  2/z) z~ [ b~.~r;,_~r;~_, t32a) 

F~(~, t) = �89 ~- 2" - lb i_~ ( l  -- 2>) ~ (32b) 

FSa(a,/3, t) = } - -  ~(1 - -  2/x) t 2"(~b,_t : -  5b,,._0 

- . I (1  - 2 / * )  2 ~  ",~'~'~ u j _ t , ~ _  ~ . ] a _  (32c) 

As was to be ex.'pected, the solutions of  the mas ter  hierarchy do not depend 
on the E variables. The pa rame te r /x  and the initial da ta  {b] determine the 
solutions uniquely. 

It is again possible to give a matr ix  t ranscr ipt ion of  the master  equation,  
ana logous  to the matr ix  t ranscr ipt ion (23) of  the Liouville equation.  For  
this purpose,  consider the set o f  values q),, which q~(a. t) assumes when 
a = 3z, 8., ..... ~,, runs through its allowed values. Thus ~,,(:) i~ one of  2" 
components ,  p corresponding to a specific set o f  values of  ;3~ ... 6,,. Then 
P(8 n) becomes a 2 '  ;< 2 " matr ix  and (29) can be written as 

q 

or using an obvious matrix product  nota t ion,  

The matrix P is Hermit ian.  It is possible to find the eigenvalues and the 
matrix that diagonalizes P. This informat ion  combined with (33b) yields an 
al ternate derivation of  (32a). 
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The master hierarchy, in particular Eq. (31a) for Fj , can be given a 
direct kinetic interpretation. Using the fact that F;(T]. r) : / :"(--q,  t) = 1 
and ,,72 = 1, Eq. (31a) can be put in the form 

FJ(~, t) = / z  --I- ( 1 --  2t,) F,i-z(~, t - -  l ) (34) 

This is the form which can immediately be understood as a gain-loss equation. 
T h e F  a level of  description in the master hierarchy will be called the Boltzmann 
level. On this level, the dynamics is described in probabili ty terms; thus the 
probabili ty for a color change at a point is the same as the probabili ty of  
finding a marker  at that  point. This probabili ty is tz, the fraction oF the marked 
points. Hence one can write immdedia teb  

FJ(~, t) = (1 - - /x)  Fa-Z(a, t - -  1) ~/x(,I  - -  F a -x(x, t - -  1)) (35) 

Equat ion (35) states that  the color  state a a t j  at t can originate from a color  
state a a t j  --  1 at t - -  1, if there is no marker  a t j  - -  1. or f rom a color state 
--,~ a t j -  1 at t - -  1 coupled with the presence o f a  rfiarker a t / - -  l. This 
is just the usual kinetic a rgument  for a gain-loss equation. It i> clear that (35~ 
i.s the same as (34). 

A similar kinetic interpretation can be given for (31bt. 

2.4. C o m p a r i s o n  

The formulas given allow a direct c o m p a r b o n  oi  the result> o!  tile two 
methods.  For  example, (18) and (32b) show that  

(fY(o~, t ) ) ,  = F2(~x, t) (36a) 

</Ja( a, 5, t ) , ,  -= F;:'(a, fi, t) (36b) 

On t h e f  x level, the time dependence of  the ensemble axerage of tl{e exact 
dynamics ig the same as the time dependence produced by the average 
dynamics. Houever ,  ~his equality no longer holds rigorously For the more 
detailed descriptions of  the system as given by f~ and F 2, respectivel3. 
However,  even on the fo, level, there are time intervals and special initiat 
configurations for which the two descriptions are approximately'  the same. '~ 
Thus  one can state precisely that  for this model,  the e or ensemble average 
o f f  ~ is exactly the same as the stochastic dynamics of  the master equation 
for F'~: for higher distributions, the exact identity no longer holds, but there 
is a well-defined approximate  relationship. 

9 See Reference 1 for a more detailed comparison. The most important feature is that, 
because of the A occurring in ~<f,2>e [compare Eqs. (19) and (20)], if'a) ~ and F ~' remain 
unequal even if t ~ co 
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In this model (as in statistical mechanics generatl3), it is possible to 
define other  averages which satisfy different equations.  For  example,  the 
local color  average at a point at time t is 

{ / t )  = ~ r/f;(~ 7, t) (37) 

This quanti ty is analogous to the local velocity in kinetic theory': 

u(x, t) = j J~c ~/(x, v, t) 

It is easy to show from (37) and (1 la) that ~/,. satisfies the mecha/Ticat 
equations of motion (3). Take the local average o f ( l  la), 

"~;(t) = ~ rl.fJ-l(e;_ff~, t - -  1) = Ej_i'~_,(t - -  1) (38a) 

This is the Newton equat ion (3). Equat ion (38a) can be solved directly [or 
alternately, (37) can be used in conjunct ion with (14)] to give the solution 

~ ( l )  = "~"" E "" (38b) -- ~ J - - :  .J--t s  

It is interesting to note that the local average (37) still possesses the strict 
periodicity {:(t § 2n) = ~:(t), as can be seen f rom (38b). This, of  course. 
must be true since the local averages are described by the same equations as 
the original reversible dynamics. Onl \  after taking the ensemble axerage 
(~ average) does the usual thermodynamic  approach to equil ibrium appear;  
f rom (38b) and (8g), there follows 

(~:( t )) ,  = 2"b~_/1 --  2~) ~ (39) 

It is also possible to define color  correlation functions using higher distri- 
bution functions: for example, 

~9,(t) = Y _Y. -,/~/~"( ~, 2,, :) (40a) 

F rom the known solutions, these can be analyzed; it is easy to check that  in 
general they do not factor: 

a~/37. r ajF3:, (40b) 

Although it is not essential for the following, it is interesting to observe 
that  it is also possible to define a mecha/zical time average 

f 

(~: ( t ) ) ,  =--- ( l / t )  y~ rl:(r ) (41a) 
7 = 0  
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It is easy to show [using Eq. (3)] that  this time average satisfies 

<,)~§ = [t/(t q- 1)] e ,<~ .  t -7 [I,U -r 1)1 rL.,(0 ) (.41b) 

This is not  identical with the mechanical  equation;  if, however, t S 1 (but 
still n ~ t), one sees that  the time average satisfies the mechanical  equat ion 
approximately;  hence in the limit that  n --* m, r -+ do afterwards, the time 
average satisfies the equat ion 

" ~- ' " (41c) \T]J-~I/ t + l  e j k~ j  ' t  

which is the same  as the equation the color  average satisfies. Hence in an 
approximate  (well-defined!) sense, <-~; t = qM). 

3. A C L A S S I C A L  M O D E L  W I T H  E X P L I C I T  P R O B A B I L I T I E S  I~ 

The model described in Section 2 was a strictly mechanical,  deterministic 
model:  probabili ty elements were introduced only as a convenient means to 
describe the model. It is possible, and for tile later discussion o f  qLiantc, m 
modeIs necessary, to study classical models which explicitly contain 
probabil i ty notions. In the context of  the models discussed in Section 2. 
the model rules are changed to the effect that  if a ball leaves a marke r ( / ) ,  it 
will change color  with probabi l i t y  Ay. If a ball leaves an unmarked place. 
it will certain!), not  change color. (It will remain unchanged with probabili ty 
one.) Thus the model  now has a mixed character;  it possesses a well-defined 
mechanics,  described by the set {e}, and it contains stochastic elements 
through the stipulation that the change in the dynamical  variables is described 
in a probabil i ty sense only. There are now two levels of  description possible: 
the Liouville level,in which the {e} variables are rigorously described, with the 
outcome of  a color  change described by the probabilities A~. and fine m:~<ter 
level, which treats both the collision process and the marker  configura~ion.~ 
on a probabili ty basis, Since the underlying dynamics is only specified in 
a probab~,ility sense, no Newtonian level description is possible. The main 
result of  this section is that  even in this model,  the {el-averaged Liou~ille 
hierarchy is not identical with the master function, al though there is less 
difference than in the previous case. Specifically. the two solutions do 
approach  each other for long times. 

~o Anyone interested solely in the quantum models could in principle skip this section. 
However, its content is essential for the comparisons to be carried out in Sections 8 
and 7, and is probably generally instructive. In this section, locations are denoted by 
p = 1 ..... n, (as before), but also by j, k (Latin letters), and color variables are 'l or ,, i:~ 
(Greek letters). 
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.-\ separate reason for btLldving this model i> that through the 
introduction of  the posit ion-dependent ( j-dependent)  probabilities ,\;, 
the possibility o f  a stochastic model for a spatially inhomogeneous  Boltzmann 

-equation is opened up.. There are at the present time no stochastic models 
known which reproduce a Boltzmann-type equation with outside forces and 
streaming terms. Writing )j = A 0 -- pt ' j ,  where A 0 is independent  o f  j, p is a 
small paremeter,  and t': depends on j ,  it can be shown that the introduction 
o f  an outside field (represented by O) can produce a spatial inhomogenei ty  
in the s5 stem. In this manner ,  one may hope to simulate the effect of  external 
fields. 

3.1.  T h e  L i o u v i l l e  Leve l  ~1 (fo)) 
The system will be described by the probability functions f ; (~ ,  t). 

fJ: '(~, fi, t); no higher distribution functions need be considered here. The 
normalizat ions are 

}-./-~(.~, t) = I (42a) 

,T_../J'.(~, #. t) = f-(~. :) (42b~ 
c~ 

Equation (42b) emphasizes thatf/'. is the joint probability of finding the object 
at ] of color ~ and the objectat k of color fi at time t. The mode! rules are 
summarized m the equation 

§ ~(1 -- r --  A,)f;(.x.  t) + ,~;.f;(-.~. :)] (43a) 

Since the color variables have only the values --1 and 1, Eq. (43a) indicates 
the ways in which a color  state ~ at k + 1 and t -~ 1 can be obtained from 
a state .~ a t . / a t  t (meaning no color  change), or. f rom,  a state - - x  a t . / a t . ,  
(showing that  a change has taken place). Using f ; ( a ,  t ) -  f-;(--:~, t) -= 1. 
Eq. (43a) assumes the form 

fJ+~(~, t § 1) = f2(a,  t)[t - -  A;(1 - -  e;)] -:- �89 -- ej) (43b) 

One should expect that  in the special case that ,~: = ,\ = 1 for a l l / .  (43b) 
should reduce to the equation o f  motion for the ./1 function o f  the previous 
section Eq. (1 la). One obtains for A = 1, 

f;+a(a, t ~- l) = r t) --  ~(! - - e j )  (43c) 

~ All the results in this and the next section can be s t ra ightforwardly  verified by elementary 
means just by showing that the equations written express the model rules correcth. 
On occasion, this verification becomes quite involved: even so, the proofs have merely 
been indicated; the omitted parts just take patience. 
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and [From Eq. ( l l a ) ]  

f~=l(~, I -< I) = fJ(e~x, t) 

These txv0 equat ions do have the same content ,  since one can establish the 
identity 

f~(E~c~, t) --=- ~ f f J (c~ , t )+  -~(1 --  e~) (44) 

[Equat ion (44) depends onh, on the fact that  c, and e~ asst, me just  the ~atues 
_@_1 and the normal iza t ion  o f f  Thus in contras t  to the equat ion of  mot ion  
(43c) and ( l l a ) ,  which only hold for A = 1, Eq. (44) is a valid identity for  
any (one-part icle)  distribution function.]  Returning to the basic equat ion  
(43b). it is very suggestive to introduce 

e s '  ------- 1 - 2 ,~(1  - -  e s )  (45) 

In terms of  Ej' the distribution func t ionf J (~ ,  t ~ 1) for the stochastic model  
satisfies x~- 

f J - a ( , . ~ ,  t - : -  1 )  = <'fJ(~, t) ~(1  - -  ~ ; ' )  ~ 4 6 a ~  

This equat ion can be iterated immediate ly  to yield for al! real e j' 

/ ~ ( , ~ , t ) =  ~ ~ ' ' - ' " -  ' . . . . .  :' - -  '~ ; -1  "'" e~_~ e i_  ~ e ~ _ , j  ' - ' (  ~, O) ( 4 6 b )  

Tile initial condit ion p(-,. 0) as given bv Eq. (12) \ield~ the initial ci~!-:.Jitloil 
f o r f ' :  

f i( .a,  O) = �89 --  2'~-lxbj (46c) 

This. used in (46a), gives the explicit solution f o r f a s  

j~(.~, t) = -,?' -~ -~-lE'j-z ... e~_~b.,_,, ~ (46d) 

It is impor tan t  to observe that  a l though this solution contains  the (ej x ariables 
explicitly, the distribution function is no longer periodic, in contras t  to the 
previous model  [see Eqs. (I4) and (24b)]. Formally ,  this lack of  periodici ty 
comes f rom the fact that  this solution conta ins  e with (e/)'-" ~- 1, Mille the 
previous solutions conta ined e with e ; 2 =  I. Physically,  the cont inued 
opera t ion of a r a n d o m  element in the dynamics  precludes an exact periodicity 
of  the system. 

It is again appropr ia te  to average over  all the marke r  positions. Using 

i2 This equation fo r f  ~ (wiih A ~ I) has the same structure as the equation for/': with 2, := I 
[Eq. (43b)]. Just ~jis replaced by e/. 
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the definition (45) for e,' and the propert ies  of  the {@~ ensemble given by' 
Eqs. (8a)-(Sg), it is s t ra ight forward to establish that  

( e j ' )  = 1 - -  23vp~ (47a) 

<~/Ek') = (~j ')<Ek'),  j ~ k (47b) 

( ( e / )  25 = 1 - -  4Ajp.(1 - -  ,~) (47c) 

Equat ion  (47c) represents the main  difference with the previous case, where 
e; 2--= 1; hence (ca ~5 = 1. With these formulas ,  the e averaging can easily 
be carried out. The result is 

t 

<f~(~x, t))~ = ~ 4- 2~-*bj_tcx H (i - 2/~)v_,) (48a) 
" r = l  

<ff(cq t ) ) ,  = �89 4- 2"-abj_,c~(1 - -  2,~/*)', 3.j = ~ (48b) 

The second form (48b) refers to a model where all the probabil i t ies ?', are 
the same. The e-averaged .distribution function for the stoci~astic modal 
has exactly the same structure as the , -averaged  mechanical  model  [see 
Eq. (18)]. I t  just  appears  as if the ma rke r  density b~ has been decreased by 
a factor  ,h (the probabi l i ty  of  a change) to yield an effective marke r  density 
g.,~. Thia is intuitively reasonable  (in fact, pret ty obvious).  

It is, however,  amusing to see how the j dependence of the probabi! i tv  
can simulate a location- ( j -)  dependent  color. Suppose A ~ - - - - 1 -  pv~, 
where p is small;  assume further  that  initiaiIy all balls have the same color,  
thus f~.(a = 1, 0) = 1; this gives bj = (�89 [from Eq. (46d)]. Expand ing  the 
produc t  in (48a) and keeping just terms linear in p gives 

t 

<f~(~, t)>, ~ �89 4- ~c~ [(1 - -  2a) '  4- (1 --  2tx) ~-I 2,oi* V ,.j_, ...] (49a) 
7 = i .  

For  long times <f)~  approaches  �89 independent  ofj .  The "ave rage"  color ~a 
a t j  computed  f rom (49a) and (37) is 

t 

s , ( , )  = [ ( i  - + (i  - 2 ),-12p  y_ 
r= l  J 

(49b) 

This relation shows that  for long times, the average color  approaches  0. 
( I f  ~ = + 1  is white and ~ = --1 is black,  the value a = 0 would be the 

la Strictly speaking, the variable used in (49a) is the local average of the ensemble average, 
(%--7~ = 52~ ~(fs(c~, t))e. The simplified notation shouid not cause too much confusion. 

8 2 2 / 4 / 2 / 3 - 4  
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average, presumably grey !) However,  (49b) also sho~es that forf i~i te  times, the 
average color  varies f rom place to place; for examplel 

&j(t) - -  aj_l(t ) = 2ptz(1 -- 2/z)t-l(v/_ 1 --  V~-t-1) (49c) 

This difference clearly goes to zero for large t; however, in the model  where 
/~ = 0, this difference vanishes for all t. Thus the introduct ion o f  a j -dependent  
probabil i ty A s causes the average local color  to become dependent  on position. 

3.2. T h e  L i o u v i l l e  Level  ( t  "z) 

It is again fairly s traightforward to derive an equation for the time 
variation off~(c~,/3,  t). I t  is just  necessary to enumerate  the circumstances 
which can give rise to a part icular  color  configurat ion at part icular locations. 
The result is 1~ 

f~*l'~'+l(e~,/3, t --  1) = Aj~fJl"(c~,/3, t) § BjkfJ(c~, t) + Bksff(o~, t) • Cj~. 
(50) 

+ e~Ak(1 - -  As) + (1 - -  Aj)(1 --  X~) (51a) 

B ~  = �89 + E~I:Ak + ek(AShk - -  )t~) + (A~ - ),:~)] 

(51b) 

G,~ -- ~Zj,\k(l - E~)(1 - ~:) (51c) 

It can indeed be checked that  (50)-(51c) incorporate  all the model rules. 
I f  At = A = 1, the f~2) equat ion for the previous case (without  stochastic 
elements) should be recovered. One finds f rom (50) that  it reduces to 

f~-l'7"~l(a, ~. t '-- 1) = ese~,f~"(~, t3, t) + �89 i -- e~e,.) f f (d .  t) 

7- �89 --  ~.jek)ff'(/3, t) --  �88 --  e~)(1 --  ez=), (X = 1) 

(52a) 

This should be compared  with Eq. (1 lb), which describes this same situation: 

fJ+Lk+z(cx./3, t + 1) = f~(Ej~,  Ek/3. t), a = 1 

That  these equations have the same content  follows from the identity 

f~'~(e:-x, r t) = e~e~,f~;(~, 13, t) + ~-e~(l --  ,~)f~(a, t) 

+ �89 -- e~) eJ~'([3, t) + �88 --  e~)(l - -  ~ )  (52b) 

a~ No summation of any kind is implied by indices occurring twice. 
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Equat ion (52b) again follow, s, as did (44), For all normalized probabil i ty  
functions, f rom the assumed properties ot'-.x, fi, E. It is both interesting and 
impor tan t  to observe that  the introduct ion of  the c /  variables allox~s the 
two-part icle  equat ion (50) to be written in the form 

ff+Lk+X(c~, /3, t 4- 1) = cje,,.[faa(c~, /3, t) -5 -}c/(l - -  ek')fY(~, t) 

- ~(1 - C )  c , , . 7 " ( 5 ,  t )  + l ( 1  - e l ) ( 1  - ~ ' )  (53) 

T h e  structure of  (53), the equat ion for the two-part icle  distr ibution function 
with general Aj, is identical with that  o f  Eq. (52a) for  the two-part icle  distri- 
bution function with Aj = ) = 1: just the c a in the (A = 1) equat ion must  be 
replaced by ca' in Aj equation.  

This procedure can be generalized to all distr ibution function> 
f ~ f 2 , . . . ,  p. First, general izat ions of  the identities (44) and  (52b) are needed 
for p(qrl~,  %r/a ,;.., c~'q~, t). These identities have the character  that  the ds  
act not on the independent  variables,  but on the functions p, fx ,  etc,i a~ in 
(44) and (52b). In this way, one obtains  an expansion of  p(r/1 "'" "q,,, t), 
f f ( r  1, t). The Liouville equat ion is obta ined by equat ing p(r h ' "  "O,,- t 1) 
*o the expansion with all the e, variables replaced b\ e" as iq (45). 

Since the solution of the Liouville hierarchy (9) and (1 I) ~as  obtained 
by iteration in which no use was made of the special propert ies  o!" the 
variables, it follows that  the present  hierarchy (46a) and (53) can be solved 
in the identical manner ,  tn fact, the Liouville hierarchy for arbi t rary  ,k can 
be immediately and exactly solx, ed by replacing ~j in the former  solutio,~.~ 
by ca'. Thus the solution of  (53) with initial condi t ion (46c) derived f rom (12), 

and 

,fJ(~, 0) = .1, ~ 2"-1~b~ 

ffk(c~,/3, O) = �88 § 2n-~-(bp~ + bk/3 + b~.~.~/3) 

is just given by 

fJT"(a, B, t) = �88 --  2'~-e(b~_:E~_t ... E~_~a -7 b~_~_~ ... E.. v~?) 

-}- 2"-"-b~-,.a,-~ej-t "'" ej-~e'z t " "  e'~.-1~/3 (54) 

I t  is again s t ra ightforward to obtain the e average of f f~(a , /3 ,  t). The terms 
linear in <x and/3,  will involve an average of  t factors  e', and  will contr ibute .  
by (47b), (1 - -  2Ap,) e (if all At = A). The term in ~9 will give a result that  is 
dependent  on the overlap of  the chains of  e's. One finds, using (47a-c),  

% _ ~ - . .  c~_,~'~_~ ... ~ ;_ /  = ( 1 -  2~a)~, if t _< j - i,- (55a) 

(cj_ t ... ej_lC'k_ , ... e'a._ ~) = (1 --  2/~)) ~(;-') [1 - -  4/,,~(1 - -  A)]*-~-' 

if. t > j - -  k (55b) 
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Thus for times t > j -- k, one obtains  

<fJ~.(~, ~, t))~ = k + 2 " - " 0  - -  25~,)'(,_,b~_~ + 5 & - 3  

+ 2 " - 2 ( 1  - -  2 /~ / , )" -~  - -  4 / x a ( 1  - -  A)]  ~ ' -~*  ( 5 6 )  

For  times t ( - - j  - -  k, the last term i sg iven  by (55a)o It  is interesting to note 
if k = 1, the case of  no overlap,  Eq. (55a) is only slightly altered; however .  
for  5 = 1, the t ime dependence in the over lap terms disappears ,  they just  
become  (1 --  2/,) 2(j-k). I t  is this persistence in the over lap terms which spoils 
the agreement  between the master  equat ion and the Liouvilte equat ion even 
for  long t imes in the ,~ = 1 case. If, however,  k ~ t, the over lap  te rms 
depend on t ime; since [1 - -  4b&(l - -  ,\)] is less than one, they become less 
i m p o r t a n t  as t increases. 

The same features persist if the ,~ variables differ f rom point  to point.  
Characterist ically,  an average such as (55a) becomes a product  

t 

I I  (1 - 2/,,~J,)(1 - 2/xA~_,) 
r = l  

The compiete  l ' ierarch} is explicitly, soluble ap.d all the E averages can be 
per formed.  

3.3. The Master Level, Comparison 

To obtain  the mas ter  equat ion,  it is necessary to construct  ti~e tran,qtion 
operator .  P(8 ~ r~) similar to (28) which takes the altered model  rules into 
account.  A coior 8j at location j an e lementary  time later becomes a color 
r/j_ 1 at j § 1. I f  t7o color change has taken place, 877~_ 1 - -  - -1 :  while 
6~rl~+ ~ = - -  1 if a color change has occurred.  The master  descript ion dynamics  
assigns a probabi l i ty  P,'~5 to a color  change and a probability'  1 -- b& to 
"'no change ."  Therefore  

= �89 =- 8~r~a+~(1 --  2/zAj)] (57a) 

Consequent ly  the transit ion opera to r  becomes 

P(8 ! r l) = I ]  �89 + 8fqj+~(1 - -  2/xa;)] (57b) 
j = l  

It differs f rom (28) onl~" through the replacement  o f / ,  by #,~. The master  
equat ion is [P is given by (57b)] 

,~(n, t + 1) = y~ P(s l n) ~(s, t) (57c) 
6 
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It appears as if the decrease in effectiveness in producing transitions 
through the int roduct ion of  the probabilities ,\~ is totally accounted for in P 
by a decrease in the effective marker  density. Since the mas te r leve l  gives 
an overall "averaged"  description of  the dynamics, it is to be expected tliat 
the introduct ion of  the A~ could be so expressed. Formal ly ,  the master  
hierarchy is exactly the same as that obtained before; just /, should be 
replaced by Aft, and powers (1 -- 2/x)* by products  of  t factors. The results for 
F; and F j:" are (as always, with the same initial conditions) 

F~(x, t) = } -- 2"-1b~_~ f l  ( l  - -  2~ _ ~ )  
r = ]  

(58a) 

[ _L 
:z, ' 2 ' ~ - 2 [ ~ b : _ t l l  (1 2k:_ff) F ' ( , , t ~ , t )  = � 8 8  - -  , 

k 7 = 1  

-1-,/3bk_e 1--[ (1 - -  2,~:_4x) 

- -  a , _ q b : _ , ,  , , = ~ (  l - -  2 , \ j _ , f f ) (  1 - -  2~, ,__/~)  j' ( 5 S b )  

The equation for F/(.a, t) again has a direct kinetic interpretat ion as a gain-  
Joss equation. Using the familiar argumep.ts, one writes 

F: ~(a. t = J) = FJ(.~:. t)(l - -  if) - -  F:(_v, ~)ff(l - -  ;\) 

__' ,_.rl _ FJ(: ,  t ) ] /x~  

= / , a  --" (1 -- 2t , , I )F;(~ ,  t) (58c) 

Equat ion (58c) enumerates the ways in which the color  o, can be produced at 
locat ion. /=-  1 at time t --  I, and assigns them their appropria te  probabilities. 
Clearly', (58c) is the same as (34) with b~ replaced by' flA. Equation (58c) c?p, 
also be obtained b y  summing (57c) over aii r/, except r/:, x;inich is equal t o  x, 

The comparison beb~een the master and Liouville hierarchie~ can just 
be read off from (58a), (58b), and (48a) and (,55a) (55b). and (56). The results 
are 

~ff(c~, t))E = FJ(a, t) (59a) 

(f :~(a, /~,  t))~ = F:~'(a, fi, t),  t ~ j - -  k (59b) 

(./J:,'(c~. 5, t))~ ~- F:7:(x,/9. t), t >> j -- k (59c) 

The difference noted in (59c) originates in the overlap terms. Although 
the two solutions are not  eqUal for any finite time t > j --  k, the terms which 
are different individually go to zero as t becomes large. This is in sharp 



t34 M a x  Dresden and Frank Feiock 

contrast  to the mechanist ic lnod'el, where the corresponding term~ arc 
( I -  2/x) e~-~'~ (in the Liouville equat ion)  and ( 1 -  2/x) ~' (in the Master  
description). Here,  one term becomes small as t becomes large.while the other  
remains constant .  Thus the Master  equat ion in the stochastic model  gives For 
long times a better  approx imat ion  to the Liouvitle equa t ion  than in the 
mechanist ic  model.  Even so, it is a quant i ta t ive  question (depending on r, 
bL., A,/, ,  and the accuracy needed) to decide whether  the use of  the Master  
solution is legitimate in any part icular  case, even in the stochastic model.  

4. T H E  Q U A N T U M  MODEL;  A H E U R I S T I C  D I S C U S S I O N  

4.1. The Model 

In ordinary quan tum theory,  the state of  the system at t ime t is described 
by the state vector  ~ f(r);.. It is related to the state vector at t ime 0 by a unitarx 
t ime-evolut ion opera to r  

The Hami l ton ian  H, contains  the dynamics  of  the system. The p:-obabili,.~ lI 
that  at t ime t the quan tum system is in a state X (say, an eigenstate of  some 
operator)  is the square of  an ampl i tude a(t), 

W(t) = "X : 4~(t);; "- =: a(r) ' - '  I(,Itbl 

These wel l -known notions will now be applied to the present model.  To  
construct  such a quan tum mechanical  version of  the mode!s,  it is firsT, 
necessary to describe the state of  a single object, a5 A ' s t a t e  is described by 
a vector p ,  ~1, t~ which gives informat ion  about  the location (p) and color  
(r/) at t ime t. Since the model rigidly prescribes the mot ion of  the 'bal ls  a long 
the ring, it is only necessary' to stipulate the manner  in xxhich the color 
changes can occur. The color  scheme and the position can be described 
independently of  each other. Formally' ,  : p , q ,  = ? ; .  ~ -q . a state or" a 
single object can be written as a direct p roduc t  of  a state }p,: in R~ ,  ,~vu,=-' ' ,o 
the posi t ion,  and a state ~, ~) ,  giving in format ion  abou t  the color in C,.,, 
where R~ is a real n-dimensional  space, C., is a two-dimensional  complex  
vector  space, and ,~5 denotes the direct (tensor) product .  The "co lo r "  space 
C,, is spanned by the color  eigenvectors i "q-), ' r / -) ,  cor responding  to color  
eigenstates. An obvious  representat ion of  these states is given by 

a~ The genuine generalization to the many-particle system will be given in Section 5. 
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One could introduce a color operator Q which has as only two eigenstates, 
i rU)' with eigenvalue ,'--1, and l 'q-)  with eigenvalue --1.  It clearly would 
have the matrix representation 

o = (0 _~ 

A general state in C , ,  i.e., a general superposition of color eigenstates, is 

iP,-q> = Cl [p,-q+> + C2 ]p,-q-> (61b) 

[ C l l  2q-  LC~I 2 = 1 (61c) 

In such a state, the probability that a color measurement at p would give 
white is t C1 '~ = l(-q + l P, r})L 2 [compare (60b)]; it would give black with 
probability [ C2 i 2 = l<-q- [P, r/)i ~. 

The distinguishing quantum feature is precisely that an object can be 
in a mixed color state such as (61b). In a classical description, a ball is either 
white or black; one can describe the changes from one to another in a 
probability manner as was done in Section 3, but the state itself refers to a 
definite color, in quantum theory, by contrast, the state #self contains both 
color possibilities. 

The time-evolution operator for the model must be so chosen that 
when a ball leaves an unmarked point, its color state is not changed. However, 
when .a ball leaves a marked point, its color state must undergo a change 
described by an operator which does not have the color states as eigenstates 
or which is not diagonal in the color representation. In that case, even a pure 
color state becomes a superposition of color states, which is the essential 
(in fact only) quantum theoretical ingredien t in the model. Thus the quantum 
modification of the model described in Section 3 must have the property that 
if a ball in a color eigenstate leaves a marked pointp ,  it will change color with 
probabi l i ty /~  and will not change with probability (1 --  ,\~).t6 (It should be 
pointed out that if a ball leaving a marker  would certainly change color, 
a pure ~olor state Would necessarily evoIve i.nto a different, but again pure 
state. The only characteristic quantum mechanical superposition of states 
would then result from the initial mixture and not from the dynamics. For  
that reason, it was felt preferable to construct the model so that the mixing 
was an intrinsic feature; this demands the introduction of )t. This, of  course, 
has the consequence that the quantum model should properly be compared 
with a classical model of the same character, thus containing the same ,X. 
This was the main reason for the Discussion of section 3.) 

16 Most of the formulas will be written for a independent ofp. The modifications introduced 
by the p dependence are usually straightforward, and only occasionally noted. 
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4.2. T h e  S c h r S d i n g e r  E q u a t i o n  '7 

To construct  the opera tb r  which describes this t ime evolution,  it is best 
to start  f rom E~ : 

. E ,  = �89 + %) 1 q- �89 - -  % ) S ,  (62) 

E ,  must  be thought  of  as a 2 • 2 matr ix ,  acting in the color  subspace.  I f  
p is not  marked ,  E~ clearly is the unit matrix.  The model  rules just  described 
require that  S ,  have the propert ies  

S T r/~ +) = e~=(1 - -  ))1/2 i 9]~+1 ) @ e%\ 1,'2 r/7+1) (63a) 

S v r]v-) = ei',A1,"-irl~+l ), &- ei~(l - -  A)z'a ~7,__1) (63b) 

Equa t ion  (61b), combined  with (63a), shows that  S~ acting on a color  state 
(say; white) at p yields a state at p ~- 1 having a probabi l i ty  1 - -  • of  being 
white and a probabi l i ty  ,\ o f  being black,  which is just  what  the model  requires. 
In the color  representat ion,  the matr ix  S~ assumes the fo rm 

= lei~(1 ~ )t)l..,. e%~1 2 
S,, t 63c) 

\e"e>, 1]'; eie(l -- ~.)i,e/ 

The phases a, ~, y, and 8 are real constants,  independent  of  the color. I f  one 
requires that  the t ime-evolut ion opera to r  is uni tary  (as is customary'  in 
quan tum mechanics),  and flarther, that  the matr ix  S,, becomes the unit matrix 
as 2, --* 0, just one o~the phases remains  free: 

/(1 - -  )0 z/2 ei~)~ ~,'z 
S~ ----- \_e_~)~z, z (1 - -  ~)1.,..,] (63d) 

The phase 7 will be taken ze ro?  s The evolut ion of  the system is now sum- 
marized by the equat ion for  the state vectors: 

j r~+z(t q- I ) )  = E~ % ( t ) )  (64a) 

This is the analog of  the Schrbdinger equat ion;  it can easi,l,y be checked that 
the requirements  of  the model  are all satisfied. Equat ion  (64a) is a typical 
q u a n t u m  mechanica l  equat ion,  if  the set {e} and  ,~ are given (i.e., the 
Hami l ton i an  is given); it contains probabi l i ty  notions precisely to the extent 
that  quan tum mechanics  always does; but  there are no other  stochastic or 
statistical demen t s  conta ined in the descriptmn.  

i7 Compare Section 2.I. 
18 In Section 7, the physical sig-nificance of the phase y will be further discussed, For the 

present, it is sufficient to note that S as given by (63d) with y = 0 gives a dynamics in 
harmony with the required model rules, although these rules do not determine S uniquely. 
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It is simple to solve the Schr~Sdinger equation by interation; Eq. (64a) 
gives immediately 

i r/~(t)) = E~_z "'" E~_t I r/~_t(0)) (64b) 

The product of-the E operators plays the role of the exponential operator 
in (60a). 

4.3. An Example 

To illustrate the characteristic differences encountered in this quantum 
model, it is interesting to discuss a specific physical situation. Assume that 
at time t = 0, all objects are in the same pure color state, 

i r / p ( O ) ) = [  r / + ) =  (10) ' p = l ..... n (65) 

What is wanted is the probability that at time t, ball p is white (i.e.. is in the 
same color state). The answer to this problem on the classida] LioLp,.ilie 
level is for the boundary conditions obtained from (46b) and (4'~b) as 

i , , .  p f~(1, t) = ~ + �89 %-~ (66a) 

<f"(1, t)), = 1 + �89 -- 2A/x) e (66b) 

The method to be followed in the quantum case is clear enough in principle. 
One clearly can compute 77~(t ) from (64b) with the boundary condition (65). 
Then the desired probability is, by (60b), 

W ~ ( t )  = ]a~(t)] z = I(-q + [ ~7~(t))l z (67) 

It is also clear that the expression for the probability will explicity depend 
on E variables, which will enter 1V~ through %,(t). Substituting the expression 
(62) for Ep in (64b), one obtains for i %~(t)) a sum of terms of the type 

(�89 (1 -+- %_z)(1 q- %-2) "'" (1 + %_~)(1 -- %-~-a) 

�9 . . ( 1 -  %_~) S~_~_~ .-. S~_, (~) (68) 

These sums tend to get somewhat complicated; however, there are two simpli- 
fying features. One is that the �9 variables occur in products with no e variable 
occurring twice, multiplying the S matrices. The other is that the matrices 

S~ = ((1 ~,?~)z/z ~r/L ~ )z/~.) (69a) 
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can all be diagonalized by the same unitary matrix~9: 

1 

S v = U D r U  -1, D r = 

A v = (1 - -  ap) 1/" + ia~/2 

(69b) 

The fact that  all the S matrices can be diagonalized by the same U allows 
a very, simple reduct ion of  the products  o f  the S matrices and the vector  

('0) 
occurr ing in (68) to a simple vector. To  obtain  W~, it is first necessary to 
take the scalar  p roduc t  o f  that  vector  with (1, 0). It is here that  the fact that  
that  the e variables factor  becomes very impor tan t .  One finds, for example,  
for t = 2, 

a~,(2) = <r]-' ! rh,(2)> 

- -  ~f~l,~, + %_~)(I --' %-1) + �89 - %_._0(I = %_1)(A - A * )  

'-- ~(1 + ~-~)(1 - , , _ I ) ( A  + A * )  

q , - 0 [  " + (A*)"-] ~, (70a) - '  �89 - %-2)(1 - -  A ~ 

Finally. this expression has to be squared to obtain IV,,~2t. Some simpli- 
fications occur  in this process. Since d = 1, all mixed products  in this square 
disappear ;  they always contain terms such as (1 - -  %_,)(1 %_o), which 
vanish. For  t~7~,(t), o n e  obtains polynomials  of  degree 2t in A and A*. with 
coefficients which depend on ~. This is in general as far  as the analysis can be 
carried out. The result is the answer  to the quan tum mechanical  p rob lem 
posed. 

As an example  of  the type of  expression obtained,  the specific result 
for Wv(2) is: 

~kvv_e~'3~ : -  }{(1 '-- %-2)(! -4- %_~) § (1 - -  %_2)(1 -r-' %_~)(I - -  A) 

--' (l @ %_2)(1 - -  %_z)(1 - -  A) + (1 - -  %_~_)(1 - -  e,,_l(1 - -  _vA ~2'~, ,, 

(70b) 

The structure of  Wv(t)  is an obvious general izat ion of  (70b). This fo rmula  
is the quan tum counte rpar t  o f  (66a) evaluta ted for t = 2: 

f , , ( I ,  t = 2) = ~ + ~-[1 - -  ~(1 - -  e~_0][1 - -  ~(1 - -  ~,,_.,)3 (70c) 

~ The  fo rmulas  as writ ten hold in the general  case where a depends  on p. The  p is omit ted  
again after  fo rmula  (69d). 

(/1~ A~'* ) (69c) 

(69d) 
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It can be seen immediately that these results have a similar strqcture 
both are quadratic functions of  A with e-dependent coefficients. The 
coefficients, however, are different. These differences persist for all ;. 

4.4. The e-Averaglng Process 

To obtain results of  physical interest in the classical case, one had to 
average over {e}. In the quantum mechanical context, a similar average has 
to be carried out. This, properly speaking, is an analysis on the Liouville 
level; the dynamics is solved in terms of  the e variables, to the bitter end. 
and the final answer is averaged over e. Thus 

:, war) ;>,  = (i a~ft)!->, = ~ (~+  ,TAO,', ',i_. (71a) 

The reason for the repetition of  this formula  is to stress that the squaring 
of  the ampli tude has to take place beJbre the averaging over e is carried out. 
The dynamics gives as quanti ty ofphysicai interes~ a,, 2 = I,~' - oni; after 
the dynamical  calculation is completed should the e a~erage be [akeJ~. \VitI-. 
the explicit form of  a~U), of which (71a) gives a sample, a,,U) = can be 
calculated in terms of  A and e variables. The e averaging can then be 
obtained in the usual straightforward,  but tedious fashion. 

It is more instructive to proceed in a slightly different fashion (the answer 
is of  course the same). Start again by considering (64b); however, assume that 
o f  the t points, exactly r ( < t )  are marked.  Since the state only changes at 
such marked points and S is independent of/), 

i % ( 0 ) =  S~1%_~(0))= S r (10) (7ib) 

Using the fact that S can be diagonalized by U [Eq. (6%)] _oives 

r / i t ) )  = UD"U -1 (10) 71e) 

With the explicit form of  U and D, this is easy to evaluate and 

'if;- %(0);  = 1[ 'A, + (A*)"] 

W~(r, t) = ~ ! A  ~ + (A*F  !2 

(72) 

(73) 

This is the probabili ty that the ball at t a t p  shall be whitepro( 'Med that  there 
are r markers in the interval p --  I ..... p --  t. The latter probabili ty itself 
is 

~(r)  = [t!/r!(t --  r)!]/zr(1 -- / , )~-r  (74) 



140 Max Dresden and Frank Feiock 

This is a consequence of  the assumed marker  distribution. Averaging 
W.(r, t) over all marker  distributions gives the needed �9 average of  H' 2, 

<w,(t)~ = ~ w.(,., t) :.:4,') 
~"=0 

t 

= ~ ~ A r + ( A * ) ~ ' - [ t ! / s ! ( t - , ' ) ! ] b c " ( l  --IX) ~ ' (75al 
r = O  

This sum can be carried out using (69d): the answer is 

<W.(t)),~ = ~- § ~ Re{1 -- 2Ap. + 2i/x[fl(1 -- ,\)]~ e-~: (75b) 

The detailed analysis of  this expression will be postponed till later, but it i~ 
perhaps useful to mention that  this expression is strikingly different from the 
classical result (66b). As t --+ oo, <IV~(t))~ does approach ~, but not at all 
monotonical ly .  Instead, it oscillates with a decreasing amplitude and a 
frequency v 

v = (I :2~r)tan-~[2u(A --  ,'~)~ 2 '(! -- 2,\:;)! (75ct 

Hence the classical and quan tum mechanical  results are distinct before the 
{el averaging is carried out [as illustrated by (70by and (70c)]: but more 
surprisingly, they' also are quite different @ e r  this axeraging has been 
performe& 

5. T H E  Q U A N T U M "  M O D E L ;  E X A C T  D I S C U S S I O N  

5.1. The State Space and the Density Matrix 

To give a description o f  the dynamics of  the system as a whole, rather 
then just of  its individual constituents (as xv~> done in Section 4). it i~ 
necessary' to construct  the space of  states of  the system. Since the balls move 
independent!5 of  each other:  the state of  the system at anl' time ~ is a tensor 
product  ~~ of  the states o f  the individual objects: 

I j,  t )  = f i  @ l c % , P , l  (76a) 
p=I 

Here, i : ~ ,  P, t /  is the color  state at location p at tirne t: it is, as was noted 
in Section (4). a vector in the two-dimensional  complex color subspace 
C(. ''1. The state j, t is a vector in 2"-dimensional tensor product  space C. 

-"Q A tensor product will always be denoted by FI, @. Ordinary products wile be written 
in the usual way, Fi,. 
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The time evolution of  the system as described by' the Liouville equation is 
therefore an equation of  mot ion  for vector !j ,  t2 in C. Equat ion  (76a) holds 
for all times; in particular for t = 0: 

Io=1 

The state '~j, 0~' depends explicitly on the values _x~, (p = 1, 2 ..... n); it 
describes the initial color configuration. As written, the states i c~, p, 0)  could 
be color  eigenstates (eigenstates o f  Q~) or not. 

To construct  the density matrix of  the system, it is simplest to recall 
that  for any system, the density matrix p(t) can be obtained in the follo',ving 
fashion. Let ~j)  be a complete o r thonormal  set of  states which spans the 
phase space o f  the system, but  which is otherwise arbitrary. Assume that  the 
initial density opera tor  is given: 

p(O) = }2 bj i . i><j  i (77) 
J 

Then the density matrix at time t is 

p(t) =- ~ b~i/ ,  t><j, t (78) 
J 

In (78). j .  t is the s~ te  which evolves via the dynamics of  the system from 
the state j ~  at time t = 0. ( F o r a  Hami l ton iansys t em.  / , / ~  = e Ht i ; . )  
The coefficients b; determine the ensemble. To apply (77) and (78) to the 
model ,  assume that the initial state is a tensor product  of  color  eigen:;tates 2~.2-' 

1./,0> = ~ @ i - q , p ,  0> (79) 

Thus p(0) can be written (exhibiting all indices) as 

p(o) = E " '  E I I  c: i ; ,  o ; ,  o 
r~ 1 77~ 2o=1 

The initial co lor  configuration is given by the b~c..~ . If  these coefficients 
have the special property that  

b,~ 1, ..... = IeI b~,, (81) 
t )=1 

zl An effort has been made to denote color eigenstates by ] r/, p, 0)'. while general states 
are written as i 5, p, 0>. 

22 It is straightforward to check that these eigenstates are complete and orthonormal. 
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the initial distribution is factored. (This is somet imes called an zmcorrehtmd 
initial distribution.) tt will be seen later that  factored initial distr ibutions iead 
to substantial  simplifications in the formalism,  a l though their special physical 
propert ies  are not quite so obvious.  

The specification (80) of  the initial density matr ix  is one where the initial 
density matr ix  is d iagonal  in the color  representat ion.  For,  taking the matr ix  
elements of  p(0) between color  eigenstates r h '  ' "  r]~', r/~ .. ' r/;', yields 

<n~' ~ ,7," o(o) ni' ' G> = <;~; '~ <;<:b4,. .< (82) 

Equat ion  (82) also shows that  p(0) determines and is determined by b. 
To  use the expressmn (78) for the density matr ix  at t ime t, it is onl\  

necessary to find the state ,~.j, t into which j ,  0 evolves al ter  a t ime t under  
the t ime evolution as specified by the model  rules. 

5.2. T h e  T i m e  E v o l u t i o n  

The state of  the system at t ime r is the tensor  product  

t~ 

' j , t>  = 1-I IE a , P ' t  [83a) 

Similarly. at t ime t - -  1, 

ij ,  t ff- 1> -=- f l  @ a , p , t  @ I (83b) 

Both , j ,  t> and i j ,  t --  1> are vectors in C. a . p ,  t> is a vector  in the color  
subspace C~.  This subspace is associated with the location p, not with ~ the 
par t icular  ball. For  this reason,  the notat ion ! x~ .  p, t> is really r edundan t}  3 
This is a color state at location p at t ime t. and it is specified comptetd.~ b~ 
writi-ng ~, p, t>. The model  rules relate c,,p --  1, t --~ 1:~ in subspace C,_ 
to ~ . p , t  i n s u b s p a c e C , , . b y E ~ :  

] cx, p "  1, t +  1> = E ~ i ~ , p , t >  (84) 

[E~ is given by Eqs. (62) and (63d)]. 
Combin ing  (83b) and (84), one has 

Ij, ' 1 > =  f l  @E~,_ 1 ~ , p - -  1, t'2 
t~=l 

(85) 

.~3 Even so, this notation is often convenient as a bookkeeping device; it is used as such in 
what follows. 
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Since the products in (85) and (83a) are over a l lp  = 1 ..... n, both j ,  t and 
I J, t -+- 1) are vectors in the tensor product space C. However, the operator 
E~ takes a vector from the subspace Cv and constructs from it a vector in 
C~+x ; the dynamics can not be described in a single-color subspace; only by 
taking the tensor product (either with a cyclic boundary condition p ~ /7  = p, 
or an infinite tensor product) can the time evolution of the total system be 
described. 

Iteration of (84) gives 

l ~ , p , t )  = E~_~ ... Ep_, i rl, p - -  t, 0~,' (86) 

(Here, the color variable on the right-hand side is writter~ as r~. to indicate 
that the initial state is a color eigenstate.) The states of the complete system 
are, from (83a), 

Lj, t )  = ~I @ E~_~'" E~_,I~7, p -- t,O) 
7~=1 

(87) 

Using this expression in (78) and putting in all the i1~,dices ~_ives 

p(t) = 2 2 b~l..~ (I  ~, E~_, ... E,,_, ~ _ : ,  p - ,, 0> 
r, 1 71 r~ t :  = I .  

*: ~ 'b , - , , /~  - t. 0 1 g ' _ ~ . . .  E~_, (88) 

This is the explicit expression for the density matrix. It contains the 
coefficients b, which describe the ensemble; the dynamics is contained in the 
products of the E operators, and the many-body character is expressed by' 
the tensor products. The quantities of greatest physical interest are the matrix 
eleo~ents ofp(t)  between states of the complete system. These states themselves 
are tensor prod ucts 

< = 1-I '~' !~,) 
3) 

The matrix elements can be obtained directly from (88), or alternately (78) 
gives 

(a  { p(t)i 5;  = ~ b: :,7~ l j ,  t; ,(j ,  t I 5;  (89) 
J 

In (89). both (x and i./, r are tensor products; using the formula (generally 
valid for tensor products) 

(a  @ b] a' (,@ b ' )  = (a  i a ' ) ( b  ] b ' )  (90) 
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one obtains 

{ %  "" a~ "" I p( t ) i  fl~ "" fl~, " " )  

= 32 " " E  b,, ...~, I-I < ~  ~ e,,_~ .-. E~_, ', , ~ _ ,  , p  - t , o >  
n 1 nn 

• <%_, ,  p - t, o I E;_~..- s I 5~> (91) 

Equation (91) contains only ord inary  products; the application of (90) has 
eliminated the tensor products. 

With the formulas (88) and (91), the calculation of the density matrix 
has been completed. These formulas are not too transparent as they stand: 
before considering simplifications, a few comments concerning the derivation 
might clarify the nature of  these results. Using (78) and (83a), p( t )  can be 
written as 

e( t )  = Y~ ... ~ bo~...~ 1-I | ~ ' ~  , P, t ) < ~  , p, t L (883 
771 ~ n  P 

e 

~ith : ~ ,p,  ~" given by (86). The complexity of this expression stem.~ Irom 
the fact that the s a m e  E~ operator occurs in .many different vectors, which 
in turn occur in the tensor product. As an example, take t = 4 and consider 

r/. p --  1, 4" = E~,_,,E~,_aE;,_aE,,_ 5 r], p - -  5, 0": (92a) 

; r~, p ,  4 )  = E~,_zE~_~E~_aE~,_ a ! :% p - -  4, 0), (92b) 

~7, P ~ 1, 4 )  = E~E~_~E~,_,,_Ej,_a -,7, p - -  3, 0) (92c) 

The tensor product constructed from these vectors to obtain p(4) from (88') 
will contain, as can beseen ,  a number of factors E~_a. E,,-a. This can be 
written down easily enough, but the formulas become a little involved. The �9 
averaging which eventually has to be carried out becomes particularly 
complicated, precisely because of the occurrence of the  e terms in each 
factor E. 

It might appear that the dynamics as given by (85) is very trivial. That  
is in fact not the case. To see precisely what is involved, consider a case 
where n = 3. Then, (83a) reads 

l j ,  t )  = [ a , l , t )  @ / a ,  2, t )  @ ! ~ , 3 ,  t )  (93) 

Here, 

p = 1 ,2 ,3  (94) 
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x ,p ,  t) is a vector in the two-dimensional subspace C,, with component> a,, 
and b~ ; however,  !j ,  t> is a vector in the 2 a ----- 8-dimensional space C. Its 
components  are (using the s tandard realization of  the tensor product)"* 

r-alaoa a 
a~a~.ba 
[alb.~aa 
alb2ba 

i.j, t ~ = i bla.~cta 
i bla,~ba 
I i b~b,aa 
(hlb_,ba-) 

The state vector ]j ,  t 7- I}~ is given by (95) as 

i j ,  t - 7  1> = (El :~,l, tle) : ~ ( E 2 i % 2 .  t?) ~ (E a .x, 3, t>) 

The known expression for E,, gives components  of" the vectors: E , ,  
Write for convenim~ce 

(95) 

(.96) 

. x . p . t .  

(E~ c~, p, tl;) = ~,n~a~ -; o,,b,]' p = 1, 2. -~ (97a) 

Here l. re, n, and o are known coefficients determined by E,, : for example,  

*'~ W- -}(1 + %,) + -.~(1 -- %)(t --  A) 1,a (97b) 

It should be noted particularly that the vector E~ i ~, t. t is contained i~l the 
subspace C ~ 1 ;  thus in this example, E~la .  1, t'> e Co. With the  explicit 
forms (97a) and (96), and using the same realizat ion of  the tensor  product  
in C, the components  of  i j ,  t -5- 1 ~;, can be obtained as 

l j ,  t -+- 1:) = { (laaa@m:~ba)(l~a~--m*b~)(/'-a'm'-b'-)') (981 

\(naaa -5- oaba)(nlaz -7 olbl)(n.,_a.,, _ o.,b.,.)J 

The effect of  the t ime-evolution opera tor  (for one step) is to produce  
j j ,  t § 1}, Eq.  (98), from j j ,  t ) ,  Eq. (95). Clearly, j ,  t --  13 is much more 
complicated than I j, t) and no immediately obvious opera tor  exists in C 
which produces ]j ,  t -~- 11> directly f rom !j, t}. In fact, it is only through the 
use of  the tensor product  (96) that one can establish a simple formal  relation 
between [./', t + 1), and j, t':. However,  as can be seen, the resulting dynamics 
is far from trivial. 

~4 See, for example, Jauch. ~5~ 

822141213-5 
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It was mentioned, pretty nlLich ill passing, that the subspace C~I -'~ is the 
tx~o-dimensional color subspace associated with location p; the operator E;,, 
acts on vectors in this subspace and construct vectors in r~2~ from them. 
Also, E ,  refers to a location, not a pa, rticular object. Classically, one couh! 
follow a particular ball [for example, by following an object that initially 
(t = 0) is in a particular place]. Furthermore, the color change classically 
comes about because of the prescribed motion of the bails. Quantum 
mechanically, by contrast, the state is totally determined by the color 
configuration; it makes no sense to ask which ball is where; the specification 
of r, he color state vector 1-i~ @ ! ~ , P ,  t gives all possible physical 
information. The change in the color configuration quantum mechanically 
is described by (84), this asserts that the state a t p  -r I at t _ 1 is determined 
in a prescribed manner by that at p at t. However, it is not at all necessary 
(although presumably legitimate) to associate this change of state with the 
actual motion of a physical object. This shows that indeed quantum 
mechanically Ev must be associated with a location, not with an object. It is in 
fact impossible to associate E~, with a particular ball. For, if this were done, 
the state of ball p at time t would be E~+,_ 1 ... E,,_~E~ i ~7,P, 0); here. all 
operators E~,  E~_~, E~+2 ..... E,,_e_~ in this sequence v, ould have to act ir 
the subspaee of ballp.  However, another bail, say ballp -:- 1, is at time z in the 
state E~+~E>=t_~ "'o E~+t I r/, p 7- 1.0).  This would require E;,_I, E)>._, .... 
to act in the subspace of ball p - +  1. Thus E,,_~ would have to act in two 
independent subspaces and this is impossilSle. 

Equation (99a) in 
coe~cients b 

5.3. The Reduced Density Matrices 

It  will 'be assumed throughout that the trace of the density matrix is 
normalized to one. Thus 

�9 " ~ <r/l' "'" r/n' [ p(t)i r/l' "'" % ' )  ----- 1 (9%) 

conjunction with (91) yields the condition on the 

z ,99b, 

(The essential element in the step from (99a) to (99b) is the completeness 
relation 

<: , ,p ,  t l % , p > < %  ,p: ,  ~ , p ,  t = 1 (100) 
~qp 

In Eq. (100), ~ rb, ,p )  are color eigenstates; they are summed; (:~,p, t is a 
general state in C,  ; it is not summed.) 
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The density matrix assumes a part icularly simple form in the case that 
the initial distr ibution factors. In that  case, using Eq. (86), 

; ( t )  = 52 - -  52 (b, ,  --. b,,,) FI @ :, v, p, t; <m p, r 

P ~p--t 

• ( ~ p - t ~ P  --  t, 0 E~,_~"" E~_ 1 (1ol) 

The writing of  this expression as a product  of  sums was possible only because 
b factored. It is further  possible to exchange the summat ion  o~er r],~ , in ( 101 ): 
with the E operators ,  define r~_t by 

r~_d0) = ~ b~ ! r/, p --  t, 0) (~7, p - -  t, 0 (102) 

r~_~(0) is clearly an opera to r  in the (p - -  t)th color subspace, p(t) can be 

written as 

= ,. ~ E , _ ~  " "  E ~ _ ~  p(t) I-I @ E~_~ "'" E~_~r~_~(O) ~ 
P 

(103a) 

Thus  in the case of  a factored initial distr ibution,  the density matr ix  is an 

n-fold tensor product  of  rp(t). 

p(t) = I-I @ rp_t(t) 
P 

r ~_t(t) = Ep_~ "" Ep_fl'p_t(O) E;_t"" ~s  

(103b) 

(103c) 

The  normal iza t ion  condit ion (99b) also becomes very, simple for a factored 
initial state: 

Z " 2 b~&,2- . -~ ,  = ,  =- 2 b,,; = 1 ~,04t 
~i "~ ~P 

I t  is interesting to observe that  the opera tors  r ,  satisfy typical  opera to r  
equat ions  of  mot ion.  F r o m  (103c), it follows easily tha t  

r~_~(t + 1) = E~r~,_~(t) E~' 

The physical discussion is facili tated by the introduct ion of the reduced 
density matrices,  which correspond to contracted distr ibution functions in 

the classical case. 
Var ious  general formulas  for  the traces of  tensor products  are useful 
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in this connect ion.  I r a ,  and a, '  are vectors in a vector  space V,, and it'.4, and 
.4,' are opera tors  in the same space, then the following relations are satisfied: 

Tr(Au @ A j) = (Tr,. A3(Tr;  A:) (105a) 

Tr(A~ @ A;) �9 (A/  @ A;')  = (Tr, A , A / ) ( T u  A ; A / )  (105b) 

Here,  Tr~ A~, means  that  the trace is to be taken in the vector  space F':. 
Fur ther ,  

~, ... ~. <o~" Ci ao_ ... @ a~, A~ A., C', o~. A , /  a2 (~ a~ "" c~ a,,i, 
o ~  a n 

~--- (a l '  t A i a [ )  TrzAo_ " '  Tr~ A,, (105c) 

The reduced density matr ices are obta ined by taking matr ix  elements of  
p(t)  [Eq. (88)] between color  eigenstates of  the system (these states, of  course. 
are tensor  products)  and  taking the trace over  all but a certain number  of  
color  variables.  Equa t ion  (88) can be used in conjunct ion  with Eq. (105). 
or (91) can be applied directly. Using Eqs. (86). (88'). and (91), one obtains  
the expressions 

/,~.," p~(:,, : )  ,7,5" ~ 32 ' 32' < m '  " , 7 ;  ~,~'= o(t)!  > .-. < : , - . .  ,~,/ 

r , 

> zt , :..,,..r],, ~7. p . t : (~7,  p, ti,7?, 

• I ' I '  <,7/[ ~7, s. t'',,,7, s.. t 1 ,7 / )  (106a) 

<'9/'9,/ Pz(P, q, t)i '@,  r/g) 

7) 1 ' 71nt 

# 

tr 

x < %  ]~ ,q , t )<~7,  q , t [ % )  1-I / " \ /  "" ' " \ %  ': r/, s, t / \ ~ ,  s, t "%/ (106b) 

Equat ions  (106a) and (106b) are the definitions of  the one- and two-part ic le  
density matrices.  ~s The sum over  r/[ in (106a) specifically excludes the pth  

t t color  variable r / j  ; similarly, the summat ions  over  ~7,, and % are excluded 

2~ The construction of higher density matrices is tile obvious generalization of the procedure 
given. 



Models in Nonequil ibrium Quantum Statistical Mechanics 149 

in (106b). The notation (3-',/)' and (~, ,)"  indicate~ this once morel ~hile the 
prime on the products  indicates that the terms s = p in "(106a) and s = p 
and s = q in (106b) are excluded. From these definitions and the completeness 
relation (100) (applied to the sums over "q') it follows that generally 

',.~2~ i P~(P, t)i "%, = ~ "'" ~ b . . . . . . . .  \.q,, ; r], p,  t ~'q, p ,  t ' %,7 (107a)  

~1,,'~?,' [ p. ,(p,  q, t)[ -q r /~  " ", 

/ i . / t # = ~ "" ~ b,,~...~,,\~l,, i ~7, p,t ' .{~7, p , t  % , , ' %  i ~ ? , q , t ) { ~ ? , q , t  ~?q" 

(107b)  

These relations simplify considerably for the case of  factored initial distri- 
butions. For  example, the one-particle density matrix becomes 

<,)p' 1 , , l<p, *)  ,~;';> = Y~ .. Y .-. Y. t,~, . - .  ~,o,,_, . . .  b~,, 
~I ~ q p - t  7)n 

" . ' q , , '  E;_~ . L- ,p  L ~,.C, 

• ( % _ , , p - - t ,  O i E J _ t . . . E , ~ _ ~  r~5; (108a) 

The summations  ~'; over all ~ except r/~_t can now be performed an-d give unity 
[Eq. (104)]. The remaining sum over r/~_, can be exchanged with the E 
operators ;  it just yields r~_~(0) [see Eq. (102)]. This, combined with (103c), 
gives 

<'~" i P~( P, t)'~ rl'~) = \'q~ / "~ r~_e(t): "@'.' (108b) 

In other words, the operator  rv_t(t) is the one-particle density' matrix. The 
form (103b), together with (108b), shows that  the density matrix is the tensor 
product  of  one-particle density' matrices: 

p(t) = I~ O~(P, r) (I09) 

The analysis of  the two-particle density matrix for the case of  the factored 
initial distribution follows the same pattern;  one obtains f rom (107b) the 
result 

. . . . . .  / " G_,(t) i  . . . . . .  r _,(r) "" ( l l0)  ' rip, ~1~ P2(P, q, t)i r]~, -q~'~ = ,,~7, r~,,, ,r],~ "q,, , 

"-~ It is perhaps worth recalling that the summations over W~, are sums o~er the hl#ia] pure 
color states. It is for this reason that the summation oxer "q~-t in (108a) has been explicitly 
displayed. 
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There exists a general fomula relating matrix elements of tensor product~ o1" 
operators to individual matrix elements: 

' r t I , t t  ! ~ \ \ a  1 @ a  e iAx@A.~ia;@ai~ ' )_ .  = \a  ' , A1 E, a l l  a,'iA.,ia.,/. . . ( I l l )  

Applying (111) to (110) and recognizing that the states denoted by ~, '  
and r/q' are in fact tensor products yields the result 

po(p, q, t) = r~_t(t) @ rq=,(t) = p , (p ,  t) @ p~(q, t) (112) 

Similarly, one can show in general (for factored initial conditions) that the 
ruth reduced density matrix is the m-fold tensor product of the one-particle 
density matrix. Collecting (112), (108b), and (103c), the final results for the 
one- and two-particle density matrices are 

Pz(P, t) = r~_t(t) = E~_ 1 "'" Ep_tr,_t(O) Epr "'" Es*,_] (1 13a) 

r~_,(0) = ~ b, i V,P -- t, 0){r/ ,p -- t, 0 ] (1 13b) 

p.,(p, q, t)  = Pl(P, t)  ~-~: Pl(q, t) ( I  13C)  

It should be stressed that these results depend explicitly on the assumption 
that the initial distribution is factored. For general initial configurations, 
the one-particle density matrix is similar in structure to (1 13a). The tx~o- 
particle density matrix, however, no longer possesses a tensor product 
structure. Using appropriately modified arguments, one find~ in the genera/  
case 

(1) r th(P,  t)  = E~-z  ED-~r~-t(O) "'" E~-z �9 " E , - t  (1 14a) 

(1~ C ( z )  " ,, / 
r,_~(O) = ~ ~ I ~ , P - -  t ,O/\~7, P - -  t ,O:  (l14b) 

7t 

Here, C~ ~) is given by 

I ; 2 ' b  ....... , . . . . . . . .  : < E ,  i114c) 
~1 v)n 

Note that r/,_~ is not summed in (1 14c). This results are indeed similar in form 
to Eqs. (I 13a) and (1 13b). The matrix elements of P2 are given by 

( % ' % '  i P.a(P, q, t)i ~71'~) 

:= -~ ,_ ,  ...... <.~)p i ~?,p,t  '<~7, p, t ,7,,i~ 
n p - t  n q - t  

• (~) ']  r/, q, t)<~/, q, t] rj~) (115) 
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Here.. C (2~_, . a,,_, is the sum of  b~,...~ o~er all ~'s except ~,,_~ and 77,,_, . If  
C c'' does not factor,  the two-part ic le  density matr ix  is not a tensor  product ;  
it cannot  be reduced further. It would be very worthwhile to study the general 
case; for the present,  however,  just  the factored case, which yields (1 13a-c), 
will be investigated further.  

5.4. The Master Equation 

In the quan tum mechanical  as in the classical master  equat ion approach ,  
the system is described by a probabi l i ty  function 9(r i / ,  .... ~7,/: t)~ which gives 
the probabi l i ty  that  object p is in eigenstate ri:/ of  the color  opera to r  Q,,.  
Since QD and Q~. commute ,  one can s imultaneously specit}' all % ' .  The 
master  equat ion gives the change of  this function in time. The independent 
variables in 5v are the eigenvalues of  the color  operators .  A superposi t ion of  
color  states does not occur in the mas te r  description. The model is charac-  
terized by P(ri I r i ' ) - - - -P(rh  ..... ri~ I ri~', .... r/~'), which gives the transit ion 

p r o b a b i l i t y  f rom state ~71'- .... ri , '  to ,~x ..... r,.,. in.a unit time. The independence 
of the balls slnows that P has a product  structure: 

P(ri1 ..... ri.n i r i l"  .... ri , /)  = E .PI(T]/, 7];,_1) ( l i 6 )  
1, 

The model rules assert the following: 

(a) I f p o i n t p  - -  I is not marked ,  rip and r]~,_x are the same: 

P1(% l r i ; - i )  = ~ ..... ;_i (I 17a) 

(b) I f  point  p is marked ,  ~ and r/~_~ are different with probabi l i ty  A: 

Pl(ri;  ri~,-1) = ,'t(l --  8,,,,.~;_1) -~- (1 --  ,t) ~,,T4_ 1 ( l17b) 

Since points are marked  with probabil i ty  p., all the rules are collected in the 
expression for  P1 : 

P1(% ['7;-1) = (1 - -  2A/~) 8~,.~;_ 1 + A/x ( l l7c )  

The quan tum mechanical  mas ter  equat ion is 

cp(r/1 ..... ~,  ; t --  l) = ~ -'- ~ P(~?l ; .... rin i ril',..., *?,,') q(~h', .... ~?,,' ; t) 
~,' ~'," (118) 

with P given by (1 16) as a product  o f n  factors,  with P1 given in turn by (1 17c). 
The form (117c) contains exactly the same informat ion  as the classical 
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expression (57a). It is \vritten slightly' differently, but it can be direct l \  checked 
that  (117c) is identical in content  with the form 

P~(~?,, ~7;_,) = ~[1 -7 ~);,_~r/,,(l - 2Ab,) ] (dl7d) 

(117d) is exactly the classical expression. The basic t ransi t ion l~robability 
is the same in the classical, and quan tum mechanical  master  equat ions:  the 
structure of  the equat ions (118) and  (57c) is also identical; hence all classical 
results obta ined in Section (3.3~ can be carried over without  further  change. 
Because of  this identity, it is not really necessary to discuss (118) further. 
However ,  a few observat ions might  be useful. 

It is s t ra ight forward to check "7 that  (118) possesses a factoFization 
proper ty ;  that  is, if 

ic(rh ..... ~,~ ; 0) = I-[ ~ z ( % ,  0) (11%) 
p 

then 

~(~71 ..... % ; t) = I-[ %(r/, , ,  t) ( I  19b) 
j, 

where cFz(~,  t) is given by 

%(,7~,  t) = ~ ~ .. ~ Pz(~ ,  i % - 0  "'" P~('q,,-~.., ;'2,,-,) r ( ~ , , - , .  O) 
",,-1 ,: -.a ~,.-, ( I 19c ) 

Thus iF c( is factored initially, it remains factored for all times. (Tiai, i> i~ 
marked  contras t  to the Liouville equat ion,  where correlat ions are.set up ill 
t ime. even if the initial configurat ion is uncorrelated.)  

Since the master  equation can be solved for arbitrary initial condition.~ 
[see either (a_a). (32c), or  (50b)]. it is not necessary, to impose the initial 
factorizat ion as expressed by (I i9a). If, however,  one assumes that  

1 qt(~, , , ,O) = ._, 2'~-~b~,~,,, q(-q, 0) = 1-i ~t~(r~,,} (~2()1 
P 

it cap, be sho~n  easil\'. [combinina~ (11%) aIld (l ] 7C)] that r/~(r~,, . t) is _..- ,ep  b\ 

% ( r / , ,  t) = -~ -+- 2"qb~_,r/~(l - -  2AbL)* (121) 

This expression can be used in ( l19b) to give 

q:(r h ,..., r/~ ; t) = 2-"  + (1 - 2~.~) * ~ b~r/,,_, 
P 

--' (1 - -  2A/~) "-'t y.  b,,b,/q,,_ ,7, , l122) 
p . q 

2v This can be done most easily by iteration of (118), using the initial condition (1 t9;0. 
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This result i> ol 'course the same as that obtained before [Eq. (32a)]: hosteler ,  
it is instructive to see how the initial factorization simplifies the calculation. 
The formulas given [(122) for the Master equation and (113.) for the Liouville 
equation)] solve the quantum mechanical  model for factored initial 
conditions. 

5.5. T h e  e A v e r a g i n g  of p~ z8 

The results obtained for the one- and two-particle density matrices 
depend through the operators E explicitly on the E variables. As in the classical 
case, the quantities of  physical interest (also those to be compared with tile 
master description) are the �9 averages of  the observables. Since the matrix 
elements of  the density matrix represent probabilities, these are the entities 
to be averaged. This is to be contrasted with the procedure used for (4.3), 
where amplitudes were computed and squared, and then the e average was 
taken. Al though the procedure is different, the physical principle is the same: 
the e average is to be taken after the observables are obtained, To carry out  
this averaging process in a convenient manner,  it is best to present' a rei~ter- 
pretation or" the matrix elements of  the one-particle densit,~ matrix, ks ing the 
abbreviat ion 

O~(e) ~ E~0_l "'" E~_t (.123) 

these matrix elements can be written as 

- - -  ' " , . =  - ' e  ) 

f t ,  Here, ri, and ~:, are color eigenstates: the summat ion over ~? is a sum over 
the states present in the initial ensemble [see (102) and {108a)]. The matrix 
element 

',ri~' i O~(e)i r/) =- <(fly' i E ,_ ,  "'" E~_e ri, p --  ; 

is to be understood in the following sense: ! r/. p --  t':,js a state in the (./) ~ t)th 
color  subspace: E:,_f acting on it produces a vector in tile ( p -  ; 1)- 
dimensional subspace, and s acts on . i t ,  etc. Thus, O ;  acting on 
]ri, p --  t )  yields a vect'or in the p th  subspace; its scalar product  with rip' is 
the entity occurring in (124), The matrix element (124) can be further 
simplified by introducing the initial density matrix in the (p --  t)th subspace 
as was done in (102): 

r,o:(O) = ~ b,, ri, p - -  ;, O,,(ri, p - -  t, 0 {125) 

'-'~ This section contains a rather detailed description of the ~ averaging. Anyone primaril} 
interested in the physical applications could skip the details and just note the general 
method and results. 
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Equat ion  (125) combined x~ith (124) yields 

{~, , '  PI(P, t)', n;;.> = {r/v' : , O,,(e) r,_t(O) 0 ' ( ~ )  ~?~,i. (126) 

This formal  result was obtained before: it is no more  than a recasting of  the 
matr ix  elements of  the one-part icle  density matrix.  For  the present purposes.  
it is impor tan t  to note the following interpretat ion of  (126). Consider  r,,_,(O) 
as a 2 • 2 matr ix  whose matr ix  elements are 

q rl'v_ r r_,(O) ~7~_,)=Zb{~?'v_,i~l,p--t ,O~.{V,t ,--t ,O[~?;' ,_t) .  (127) 

"O',,-t and ~7~',-t are color  e~genstates in the (p  - -  t)th subspace [given b? 

('0i ana 
as always].  The sum over  r / has to be over  a complete  set, which again could 
be the eigenstates 

(?) 
but this is not necessary. One can now, by direct calculat ion,  verify the 
identity 29 

( ~ '  OrO']~?";~ = Y b,,{~': O i '~i:~, OE~ r," (128a) 

This is valid for an arbi t rary  opera to r  O. The r ight-hand side is identical in 
fo rm and interpreta t ion wi th  (124). The left-hand side contains OrO*, which 
to be unders tood as an ord inary  matr ix  product  of" 2 .: 2 matrices:  the 
matr ix  r is given by (127). Further .  calling OrO* = M, the left-hand side of  
(128a) is to be unders tood as: 

,(r~' M r]") = (r]l', ~?.,')(M)(~i ') (128b) 
- ,7"],) / 

Combin ing  (1__~), (124), and (128a) leads to the result 

p.~(p, t) = E~_~ .'. E~_trv_~(O) E~_t "'" E~_, (129) 

where now p, is an ordinary matrix a~ produc t  o f  (2t '-- 1) two-dimens iona l  
matr ices with r~,_t(0) given by (127). It is easy to show f rom (127) that  r has 
the form 

. (0 )  = + "  ) 
Z *  1 _ _  Co 

e9 For convenience in writing, the indices have been omitted in (128a). 
a0 The matrix form of  E~ is given by (62) and (63d), or (132a). 
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0 

Here. - is an arNtrarv, complex number,  and c~ is r ea l  --~ ~-~ c~ ~_- .,.~, I f  the 
states ~/ which are summed over in (127) are themselves color  eigenstates, 
rv reduces to 

r,CO) = + c, o ) (13Ob) 
0 �89 - % 

The sum over r/ in (127) is a sum over those states that occur in the initial 
ensemble. Since it was assumed that the initial density matrix was diagonal 
in the color representat ion [see Eq. (80)], the states occurring in the initial 
ensemble are indeed color  eigenstates. Thus, the form (130b) o f  rp is the 
appropria te  one to use. 

The great advantage of  the explicit matrix form of PI(P,  *) is that now 
the E averaging can be carried directly out:  

(p~(p, t)) ,  = Z "'" Z P ( q  .. . . .  e,,) E ~ - I  "'" E~_,r~_,(O) EvL ,  . . .  E',*,_~ (13l) 

The ~ variables are contained in the E matrices; P ( q  ..... ~,,) is the probabili ty 
for a particular marker  configuration. Al though it would De possible using 
the expression (8) for P to evaluate (13i), it is simpler and clearer to follow 
the method used previously in Section (4.3). Recall that  the matrix expression 
for E~ is given by al 

E,, = }(1 ~- %) 1 --  -~(I -- % ) S  (132a) 

_ A ) I , -  ~ a l , e  , 
S ([32b) 

Further,  S can be diagonalized by a unitary matrix U: 

U---- (1 ~ i  " . . . .  ' 

S = U D U  -1 (132d) 

(A ) ,, A*  (132e) 

A = (1 --  A) 1/" q- ih 17"" (132f) 

To carry out the e averaging of  the product  of  matrices in (129), assume first 
that o f  the t points, p --  1 to p --  t, exactly s are marked.  The unmarked  
points yield E factors ol s unity [see (132a)]; each marked point contributes an 
S. Hence for s marked points,'p~ becomes 

?~(p,  t, s )  = S~r~_t(O) S -'~ (133) 

a* This is the identical nomenclature  used in Section 4.3. It is repeated here to facilitate 
reading. 
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The average of  p~ is obtained by multiplying p~(p. :. s) by the probabilit~ 
that of  the : points, s are marked,  and summing over s == 1 ..... t. Therefore 

t 

< p~(p ,  t ) , ,  = ~ .  [ t ! / s !  (t  - s)!] tx~(l  - t~) ' - '  S % _ , ( 0 )  S 
8 = 0  

(134) 

The remainder  of  the calculation consists in evaluat ing the matrix product  
and performing the sum over s. Since S can be diagonalized by U, the 
calculation o f  S ' is s traightforward and yields 

- - i )~  (t35a) S ~ = R e ' t A * t l  I , '  

Using this result, matrix multiplication gives 

S~r~_,(0) S -~ = �89 --  Re(c, ,_,A-~,)  (135b) 

Here, the form (130b) was used for the matrix r. The eft, is a 2 >: 2 matrix 
(which will occur frequently) 

i t ~ ~  - I ,  I t ;(~, 

The matrix occurr ing in (134) has the simple form (135b). Of  specia! impor-  
tance is the simple s dependence o f  the matrix. Its occurrence as a po~er  
.4 -~~ allows the applicat ion of  the binomial theorem to obtain the sum in 
(134), ~ i t h  the resul~ 

<o~(p, t)) ,  = �89 + c~_~ Re{[1 --  25/2. ~ 2ip.(5 - ,V)~"~] ~ %~ (137) 

This is the final result for the one-particle density matrix; it is given here a> 
a 2 • 2 matrix. All questions dealing with the one-particle distribution can 
be answered by (137). 

5.6. T h e  �9 A v e r a g i n g  of pz sz 

Before calculating the �9 average of  p~, it is usef'ut to collect t~o  restz]t~. 
Note  first that  (.I34) and (137) can be combined to give the sum formula  

:p l (p ,  t))~ = ~ [t!/s! (t - s)!] tz~( l  - tzl '  ~ S % _ , ( 0 )  S -~  
8=0 

= ~1 § c~_t Re{Rtcr0)~ (138a) 

R ~ 1 --  2A/z -- 2i/z(X --  ,\2)~ 2 (138bi 

ae See footnote 28 as the start of Section 5.5. The calculations in this section are somewhat 
long, a little tricky, and quite tedious. Some details are omitted. 
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This sum formula is valid for all values o f t  and allt). The ~ccond observation 
deals with the evaluation of  the matrix product  S*rv_e(O ) S  -~. The same 
procedure  [use of  (132d)] can be employed to obtain another  matrix product:  

S'~(p~(p, t ) ) ,  S -~ = 11 § c;_t Re(RtA~'~%) (139) 

Both these results will be needed; A is given by (132f). " 
The discussion leading to (129) for the one-particle density matrix can 

be repeated for the two-particle density matrix, so that pz can be written as 

po(q, p,  t )  = E q - l  "'" Eq , , ro - , (O)  Eo*-, "" E~+,_, 

,@ E, ,< .-. s E,~_t "-s (140) 

O, appears as a tensor product ;  each factor  is an ordinary product  o f  matrices. 
In (140), p is assumed larger than q; p,  q, and t are given and fixed. The 
locations occurring in (140) are the points labeled p --  1 ..... q --  t. Divide 
this set o f  points into three nonintersecting sets: 

(l) Points p --  1 ,p  --  2 ..... up to and including q. 

(11) P o i n t s q - -  1, q - - 2  ..... up to and i n c I u d i n g p - -  t. 

(Il l)  P o i n t s p - -  t - -  1 ..... up to and i n c ! u d i n g q - -  t. 

. I[ " l  I t  is clear thai; se~,-'~'~,1 contain just matrlces of  thep  chain, set IIl  will contain 
just matrices of  the q chain, while set II  may contain matrices o f  both chains. 
I f  set I[  is not  empty,  there will be overlap between the chains. Whether  the 
chains overIap depends on p, q, and t: 

p --  t 2~ q, t ~ p --  q no overlap (141) 

p --  t < q. t > p --  q overlap (]42) 

Consider now a marker  a r rangement  with sl markers in region I. se in 1I, 
and sa in III .  Since the E matr ix for a marked point  is just  S, Of for this 
part icular  configuration becomes 

Pe(q, P, t, sl , s,. , sa) = S~S*2rq-~(O) S - ~ ' S  -.3 

:~: S~-S*'r ~,_~(O) S - ~  S -s-,- (143) 

Writ ing the product  of  S operators as S% S ~-" is done only to indicate the 
origin of  the factors; these factors commute ,  of  course. To obtain the e 
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average of  p.,_. p.,(p, q. t, s, , s.,,  Sa) must be multiplied by the probabi l i t \  o f  
this marke r  distr ibution and summed over s l .  s~. sa : 

,,-o q-p+~ ~-q (p  _ q)! /*~1( 1 __/*)"-q-~ 
@2(q ,P  , t ) )~  = 2 ~ 2 sl ' ( p - - - c i  ~ sl)! 

Sl~O 82=(| 83=0 

(q - -  p 4- t)!  /,)q_~+, ..... 
• (q - -  p + t - -  s2) ! sa ! /*~( I - -  

sa! ( p  - -  q - -  sa ) !  t*~( l  - -  

• S~aS'~=ro_~(O) S-'~'S -'~ @ S'~'S%~,_~(O) S-~IS -~" (I 44) 

The complexi ty  in this fo rmula  clearly stems f rom the s., summat ion ,  which 
contains  contr ibut ions from both factors  in the tensor product .  

In the case o f  no overlap,  region I i  is empty ,  s., = 0, and the summat ions  
over  s~ and sa can be per formed separately (note that  in this case, s~ and sa 
both  run f rom 1 to t); using (138a), the result is s imply 

<p, (q ,p , t )> ,  = (,,pa(q,t)), @ < p a ( p , t ) 5 , ,  t ~ p - -  q (145) 

I f  there is no overlap,  the averaged two-part icle  density matrix factors in~,~ a 
product  of  averaged one-part icle  density matrices,  as could be anticipated.  
In the case that  there is over lap  (which will be assumed from now on), the 
sz and s.~ summat ions  in (144) can still be carried out using (I 38). It  is necessar), 
to observe that  the s~ summat ion  runs f rom 1 to p --  q in (144) instead of' 
I to t in (138). Thus ,~pX simplifies to 

q-~+~ (q - -  p 4- t ) !  
(p , . (q ,  p ,  t ) ) ,  = z.. ' ' ~,%(1 - ~ )~ -"+ ' -~ -  

.o~=o (q --  P + t - -  s~.)! s~_ ! 

X S*=<pz(q,p --  q )?~S  --~"- @S""-/ ,pa(p,p --  q ) ) ~ S  -~'- (146) 

Apa r t  f rom the combina tor ia l  factor,  (146) contair~s precisely the matr ix  
combina t i on  noted in (139). The purpose  of  the further reduction is to ca~t 
(146) in such a fo rm tha t  the s2 summat ion  can be performed.  It is somewha t  
simpler to study the correlation function ,V(q,p,  t) instead of  p. , . '~ .  The 
function X is defined by 

X ( q , p ,  t) = {p, , (q,p,  t))~ - -  <p~(q, t))~ @ <pa(p, t))~ (147) 

Substi tut ing (139) in (146), construct ing X as in (147), and using (138). there 
results 

~ ( q - - p ~ t ) !  b~( 1 _ bL)q_ ~_~_,, ~ Y ( q , p , t )  = c~_~c~_t ~- } s~)! ' " 
~o=o (q - -  P s~_ . 

• {Re(RP-qA"*%)  @ Re(R~'-qA~-~%) --  Re R '% ~; Re R'cr o} 
(148) 
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Mo~t o1" the calculat ion leading to (148) is routine manipula t ion;  one does 
need the tensor product  rule 

(A if- A') @(B . - ?B ' )  = A @ B + A  @B '+  A' @.Bff-A' @ B' (149a) 

The  te rms  occurr ing in (148) have an obvious  enough origin; perhaps  the 
only surprising feature is the absence of  terms linear in c~_t,  which come 
in through (139) and  (138a). For  such terms,  the s~ sum can be evaluated;  
this shows that  they indeed cancel. Equat ion  (148) can be simplified further  
using the identity 

R e A  ~; R e B =  ~(A :;~ B - -  A @ B * - -  A* ,,~,B A* ~>- B ~') (149b) 

App ly ing  {t49b) to the bracket  in (148) gives 

{ . . . }  = ~ o o , ~ , - ~ , , - ~ l / t 4 , =  ' - i R !2,) '~o c~o*} ~ , . , . , ~  . . . .  - R 2f) o'o @ ~0 + (I R i "{'-*~ C 
(150~ 

At first sight, it may appear  strange that  the coefficients oi ~ % ~ % and 
% @ cro ~ in (150) are not  the same. One might expect R e~ ..... ~ A ~-' 
instead o f i  R i z~j'-v~ in the second term. This is in fact the case, but A = ]. 
as a glance at (1320 will show. With (150), the s., dependence is again a simple 
power ,  so that  the sum over sz can be performed.  If one resubstitutes the 
expression for R as given b,, (138a) in terms of  A. noting that  

R ~ I - -  2Z> --  2@,(a - -  )r = t --  p, -4 I~A"- (15t) 

the result  of  the summat ion  is 

X ( q , p ,  t) ~ G_,c~_, Re{[l - - / z  +/zA~-)'-'c~'-"!(l - - / x  - tzA4) ~-~'~' 

- (I  - ~ + I~A~) ~-'1 <, <,  % + [ ~ - -  ~ ~ ~ A  ~- :~ "-~' 

Equa t ion  (152) gives X for  times t > p - -  q. With (152) and  (147), the two- 
particle density matr ix  is explicitly known;  all questions concerning the two- 
particle distr ibutions can be answered f rom (152). 

The  formulas  (152) and (t37) are perhaps  the most  impor tan t  results 
of  this paper ,  giving the exact one- and two-part ic le  E-averaged density 
matrices.  In the next sections, the physical results which follow from these 
ra ther  compl ica ted  expressions will be analyzed.  To  provide the model  with 
some measure  of  physical relevance, the next section contains  a "magne t ic  
real izat ion"  of  the model. 
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6.  A M A G N E T I C  R E A L I Z A T I O N  

The model rules of  Section 4 were quantum mechanical  versions of  the 
rules of  the classical models. As already noted in the introduct ion,  these 
rules were abstracted from actual physical situations: however, the simpli- 
fications introduced were so drastic that it is not at all clear that  the final 
models have anything to do with physics. It is therefore interesting to show 
that  it is possible to construct  a more or less realistic physical system which 
obeys the model rules set down in Section 4. The rules given there referred 
to the single-particle p rob lem-- th i s  case will be considered first; the many-  
particle problem will be treated later. 

Consider a straight line in the xy plane having a direction e given by 

e = ezcos a -- e., sin a (153) 

The unit vectors in the x , y , -  directions are e~, e 2 , ea ; a is the angle the line 
makes with the x axis. Assume that  somewhere an origin is picked on this 
line; the line is divided into segments of  size d. The distance s f rom the origin 
can be written as 

s = q d -  w/ (i54) 

Here, q is an integer 0o 1, 2 ..... while y lies between 0 and I. Imagine that a 
particle of  spin t/2 moves uniformly along this line. It moves as a classical 
partic.le with m o m e n t u m  p,. (momentum along e) and speed d/r. It i~ also 
possible to consider this mot ion as a succession of  steps of  size d. each  <tel.-, 
taking a time r. The trajectory may be considered as generated by the 
" H a m i l t o n i a n "  

H o -~- p e ( d / r )  (155a) 

The time-evolution opera tor  for a time interval r is 

S 0 ~ c i f t ~  r _~_ e, ;dn .  r 

So describe.~ the uniform motion of  the particle along the line e. The particle 
has a spin }; hence it possesses a magnetic momen t  

= g o  ( 1 5 6 )  

g is the usual gyromagnet ic  ratio, o is the Pauli matrix spin vectoraa: 

- - i  1 01 
- -  (7 o,  = 0 ) ,  - =  (0 _ (1571 

aa Notice that these o matrices have nothing to do with the o 0 matrix of the previous 
chapter. Notice further that h has been put equal to one. 
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Now introduce a magnetic field in the ?0' plane perpendicular to the line e. 
The magnitude of  the field is a function of  s, the.distance along the classical 
path. The field is assumed to be [using (154)] 

BJs )  = �89 --  %)B[ea X el (~58) 

The field is in the xy plane, perpendicular  to the direction of  mot ion  of  the 
particle. % is § 1 or - - I ,  as before. I f  % = .--)I, there is no magnetic field 
in the domain  f rom qd to (q -7- 1) d~ I f  % = --  1, there is a magnetic  field. 
Its magni tude  is B; the vector product  defines its direction. The magnetic 
interaction energy of  the particle with the field Js then [using (150) and (156)] 

/-/1 = -}(1 - -  %)gB,= �9 [ea • e] 

= �89 -- %)gB(% cos c~ --  % sin a) (159) 

Because o f  the occurrence o f  the Pauli matrices,/-/1 is a 2 >~ 2 matrix. The 
total Hamil tonian of  the system is H~ -- H1.  The t ime-evolution operqtor  
for a t imeinterva!  r for this total system is [see (I 59) and (!55a)] 

S(r) = exp[ipod § ~rgB(l --  q ) ( %  cos a --  o-~ sin ~)] (160a) 

E~uation (I 60a) shows that the t ime-evolution opera tor  splits up as a product ;  
one factor So describes the uniform motion along e, the other S~ de>tribe_- 
the interaction: 

SI =--- exp[�89 -- Ev) B(% cos c~ --  cr~ sin ~)] (160b) 

The remaining discussion will just deal with the interaction.  The known 
properties of  the Pauli spin matrices make it possible to write S1 as a 2 ',~ 2 
matrix 

&(q) = cos x~ -:- (i sin x~)(% cos :x --  ~x sin ~) 161a) 

xq =-- �89 - -  % ) g r B  161b) 

Using the representation of  the Pauli matrices (157), $1 assumes the explicit 

fo rm 

[ cos x (sin x) e -is' 
&(q) = ~ - ( s i n  x) e i~ cos x ) (162)" 

I f a  point  q is not  marked,  % = I, so x~ = 0. In that  case, (162) shows that 
$1 for  an unmarked  point  is unity. For  a marked puint, % ---- - -1 ,  xq = grB. 

82~!41213-6 
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Defining 

A -= sin2(grB),  A t,.' = sin(grB) (163) 

It is seen that S for a marked point has the form 

1(1 - -  A) i/" ti"2e-i~ ~ (164) 
S ---- \ _A1/2ei~ (1 -- A)z.a/ 

A glance at (63d) shows that this is precisely the time-evolution operator 
which the model rules required. The phase ?, is just the angle - -a  which the 
line of motion makes with the x axis. If the motion of the particle is along the 
x axis, the phase disappears and S assumes the form used throughout this 
paper. 

The physical picture which emerges is one where a particle of spin ~, 
with a given initial spin, moves through a medium. At certain locations, there 
are ferromagnetic impurities producing local magnetic fields. These fields 
(in the xy plane) will produce changes in the spin state of the particle. If  the 
initial state was assumed to be an eigenstate of the : component of the spin, 
the new state will no longer be an eigenstate of the - component, since the 
tin,e-evoiution operator contains tile x and .~' components. One can compme 
and discuss the average of the spin in the z direction. The precise corres- 
pondence between model and example identifies the color eigenstates of the 
balls with the spin eigenstates of the particles; the markers correspond to 
local magnetic fields producing transitions; averaging over the markers 
corresponds to an average over all impurity locations. The approach Io the 
color equilibrium is replaced by the depolarization of an initial beam of 
polarized particles. The most concrete physical picture which realizes this 
tnodel is the depolarization of an initially polarized beam of neutrons which 
travels through a medium containing ferromagnetic impurities. The neutrons 
can be magnetically scattered. The time dependence of the polarization 
corresponds to the average number of balls of one color and requires the 
one-particle density matrix <p~>~. Spin-spin correlation functions would 
require a kno~ ledge of '~p,a; ~. One of the advantages of the magnetic version 
of the model is that it now becomes possible to introduce external fields in 
a natural way~ A simple way to do this is to consider, instead of the field (158), 
which represented the internal field, a new field 

Bq = �89 --  %) B[e a X e] + Fve a (165) 

This clearly presents an additional field in the z direction. The new interaction 
energy is obtained in the obvious ivay i the magnetic part of the time evolution 
operator can be'written (for a time interval r) as 

S = exp{i[x(% Cos a -- cr~ sin e 0 .'-- ),or.]} (166a) 
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Here, .v is the same as before a2 

x = xq = 1(I --  %)grBq (166b) 

y = 0,~ = g r F ~  (166c) 

It  is again possible, using the properties o f  the Pauli matrices, to write S as 
a 2 • 2 matrix similar to ( t6 ta ) :  

S = cos r -5/(sin r ) [ ( x / r ) ( %  cos a --  c~ sin ~) + (y / r )  cry] 

r 2 -~  g~r~[�88 - -  eq) 2 B 2 + F 2] ( 1 6 7 )  

Since all the essential physical features are already contained in the special 
case that  c~ = 0, this will be assumed. 

Consider  S for  the case that  % = 1, i.e., there is no local field. In the 
previous case, S = 1 if % = I. In the present case, use of  the explicit f'orm 
of  the Pauli matrices gives S_ --= Sq(% = + 1): 

je *~''~ 0 "1 ~16E) 

Thus the time development f rom a location without  internal field is described 
by (168), The states do not remain unchanged under the action of  S_ ,  but 
eigenstates remain eigenstate states. I f  

~]~ = c! r l , )  --' c.,i~?-i (159a) 

S+ IV)' = c le~ 'e~:  r~+) - )  c.,e-~g-,e r~-) (16r 

the probabili ty o f  finding the spin up is [ cl ~2 in state ! -q); it is the same in the 
state S+ l r/). The relative phases are changed by S+ ,  the probabilities are 
not. Hence the original model rule which required that the relative proba- 
bilities, for spins up or down, shall remain unchanged when spins m o v e  
through an unmarked point (a point where there is no interac',ion) is still 
satisfied. This same rule is still valid when there is an addit ional  outside 
field Fq%. I f  point  q does possess a local field, 

x = g B r  

y = g F r  

r 2 = x z _}_ y2 = g2r  __) F 2) 

3' F F [1 
sin ~ - -  i- (B 2 _ F2) 1' '  --  B l 

f 2 

2B e "") 

0 7 0 a )  

(170b) 

(170c) 

(170d) 

34 Although x, y, B, and F all could depend on q (x always depends on q), the q index is 
often suppressed. 
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(170d) defines ~ (the expans ion  is a p p r o p r i a t e  if tile external  field F is small  
c o m p a r e d  to the in ternal  field; it is obviously  an expans ion  in powers  of  

I t  is s t r a igh t fo rward  to ob ta in  the t rans i t ion  matr ix  S_ ~ S(% = - -1 )  
from (!67) and (170a-d) .  The result  can be wri t ten as 

(cos r "-k, i sin 9) sin r cosg) sin r 
S_ = ~ - - c o s  9) sin r cos r - -  i sin 9) sin r)  

(171) 

This is the form for the t rans i t ion  mat r ix  if an outs ide field F is present .  I t  
should  be con t ra s t ed  with (162), which, wri t ten  for the case a = 0. is  

, cos x sin .v) ( 1 "~,_a~ 
S_(F:O)= [ - s i n x  c o s x  

In the case F = 0, y = 0, q) = 0, and  x = r; thus S_ reduces correc t ly  to 
S_(F = 0). The in t roduc t ion  of  )&'~ = sin x t r ans fo rms  S_(F = 0) into the 
t ime-evolu t ion  matr ix  used th roughout .  I f  one in t roduces  v = 1 - -  ,'~. the 
form of  S becomes 

s_o :  : 0) : . 1 - ( 1 -  ) (,72b) 

The e \p ress ion  for S_ with F = 0, Eq. (171), can be writ ten in a vet', >imil'!r 
form b~ in t roduc ing  

u 1,'2 = cos r + i sin 9) sin r (.173) 

In terms of  u. wilict~ is obvious ly  complex ,  (171) can be wri t ten as 

( u 1 "" (1 1 ." - -  i u  i) " I  S_(s  (174) ~-(1, - ! u ])~,2. (~.)1 2 I 

It is c lear  that  this mat r ix  describes the same kind of  process;  S_(F) a c t i n g  
on a spin eigensmte yields a state which will be a mixture.  The probabi~it.~ 
that  no change  has taken  p lace  is given by : u (this cor responds  to v = i - -  ,', 

in the case where F = 0). The to ta l  t ime evo lu t ion  is the resul t  of  many  such 
actions.  The  explici t  solubi l i ty  of  the F = 0 models  depended  on the fact tha t  
the S_(F = 0) mat r ix  could  be d iagona l ized  by a mat r ix  U which was 
independent of  ~ (or v). Hence the ac t ion of  many  S_(F = 0) ope ra to r s  led 
to a power  of  a single matr ix .  The d iagona l i za t ion  becomes a good  deal  
more  invoived for  the case where S is given by (174). .% 

as The projection techniques developed in a different context ug~ allow an explicit solution 
of this case as welt. The results are contained in a forthcoming publication. 
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It is clear, however,  that the formal ism given immediately suggests an 
approximat iol{  procedure in terl!ls of  powers  or" B,F. The matrix S_ can be 
expanded as a sum of  matrices,  assuming c# is small. Ordinary  per turbat ion  
calculus can then be employed to obtain  the response of  the system to outside 
fields. Thus apar t  f rom providing an interesting example  of  the models,  the 
magnetic  realization also points to natura l  and hopefully useful extensions 
and modifications 

7. C O M P A R I S O N  OF T H E  RESULTS; C O N C L U S I O N  

7J.  General Remarks 

The study presented in this paper  dealt  with various different ways of  
describing a part icular  model. In these discussions, tile relationship between 
the different t reatments  is always or considerable importance.  All the 
appraoches  are designed to calculate the same physical quan t i t i es ; s ince  all 
led to equations which could be explicitly, and rigorously solved, a direct 
co~.~parison becon~es possible. It is instructi \e to conaicier '~ ie:x ~i:,~qple ca>~'< 
in some detail. It should be recalled that  the descriptions are on the elastic'a! 
master  level, described by (normalized)  functions F~,x(x, t), F~,~,(.,.,fi. r). 
Alternately,  there is the classical Liouville level e-averaged, wtnose functions 
are denoted by i./i)(~, r ) ) , ,  (.s fi. t ) . , .  On either level, one can have 
a stochastic element /X il~ the description: this :l is kty, ua!Ix x,,rittcn near t!~e 
tbrmula,  in the quan tum case, there are again the master  level functions 
%,(r/.  t) and the Liouville level characterized by :::pl(P) ~ and ~O.-,(q. P. t .  
To make  the discussion concrete,  t~,'o special p rob lems  will be considered 
on all levels. 

Assume that  the initial state (t = 0) is a state where all the spins a6 are 
in -:--: eigenstates. (lq the color language, all objects are krlo\vn with certainty 
to lnave the same color.) The questions to be considered are a,. f~llox; s: 

1. What  is the probabi l i ty  that  at t ime z. the spi~ at /~ is in :Iqe - 
direction ? 

2. What  is the probabi l i ty  that  at  t ime t, the spin at p and the spin at  q 
are both in the - - z  direction ? 

Since the classical functions are already normalized,  these are proba-  
bilities; hence question 1 requires the knowledge of  F,)(1, t) on the master  
level and (f,,l(1, t) ~ on the Liouville level. Recall that the values of  the 

a,~ In this section, the model language and the language of ti~e magnetic example will be 
used interchangeably. 



166 Max Dresden and Frank Feiock 

classical variables indicate the color. The fact that the initial color ~as xx ith 
certainty 1 is expressed by 

Ff l ( l ,  0) = 1 (175a) 

<fol(l,0)?,~ = 1 (175b) 

In the quantum case, probabilities are the matr ix  elements of  the density 
matrix. Denote  the color  eigenstate by 1); then the probabil i ty that  at t ime t, 
the color  a t p  is 1) is determined by 

(1 i p~(P, t)l 1),  (176a) 

In the master  formulat ion,  this same probabil i ty is given by g,,(r/~' = t , t). 
The determinatmn of  the joint  probabilities needed in question 2 demands  a 
knowledge of  the two-particle functions. On the master level, for example.  
one needs F~,(1,  1, t). The  quantum discussion consists in the calculation of" 
(1 @ 1 I p2(q,P, t) i 1 @ 1). Since the general fo rm of  these entities is known, 
the detailed computa t ion  consists in evaluating these quantities for the 
specified initial condition and giving the independent  variables nt.!meric',~,l 
values, or calculating certain matrix elements. 

7.2. T h e  O n e - P a r t i c l e  Prob lem 

The quanti ty ~.hich is calculated throughout  in this section ~ the 
probabil i ty that  at t ime t, the ball a t p  is white (a = 1), but this same physical 
quanti ty is written in different ways, indicating the level of  its calculation. 
The relevant formulas are (18), (32b), (48b), (58a), (75b), (121), and (137). 
The initial condit ion imposed yields for  the classical coefficients [see (12)]. 

b~ = 1/2 ", p = 1,..., n (176b) 

The initial condit ion gives for  the coefiqcients c in (130b) the result 

cp -= �89 p = 1 ..... n (176c) 

With these coefficients, one obtains 

F,Z(1, t) = .~ ,+ �89 --  2/,) ~ (!77) 

<f~z(1, t)>~ = ~ + �89 - 2t,) ~ ( i78)  

F~*(l( t)  = �89 + �89 --  2A/L)', a ~ 1 (179) 

( f ~ ( l ,  t))~ = �89 + ~(1 - 2au) ' ,  a -~ 1 ~180) 

q~(r/fl = I, t) = �89 --; z-(1 --  2A/,)* t l81) 

( i  ! Pz(P, t)l 1)~ = �89 --k �89 Re[1 --  2A/, § 2i/,(A --  A2)z/'] ~ (182) 
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Thus the one-particle probabi l i ty  distribution is the same for the classical 
master  and Liouville equations,  as well as the q u a n t u m  hlechanical master  
equatio n. The int roduct ion of  a stochastic element (3`) does not change the 
general character  of  the distribution function. In fact, the classical master  
equat ion with a s tochast ic  e lement  is precisely the same as the quan tum 
master  equation.  The.dis t r ibut ion functions app roach  the equil ibrium state 
monotonical ly .  The equil ibrium state is a state where there are as many  spins 
up as down;  the beam is depolarized.  

Expression (182), which gives the same quant i ty  derived f rom the 
quan tum Liouville equat ion,  shows a drastically different behavior.  It is still 
true that  as t --* co, the system approaches  equil ibrium. To  see this explicitly, 
wr i~  

1 - -  2tzA + 2itz(A - -  A~-) 1/2 = Ro el~ (183a) 

Ro -~ ~ 1 --  4/xA(1 - - /x )  (183b) 

tan 0 = 2/~(3` - -  3`-")1""-/( I - -  2p~3`) (183c) 

The probabili t5 (182) then becomes:  

(1 i pl(p,  t)E 1)~ = ~ + ~Ro ~ cos tO (184) 

It is easy to check t h a t i f 0  < / z  < I a n d 0  < Z < 1. R~, : < I. Consequent ly  
as t ~ ~ ,  R~/ -~. O, hence the probabi l i ty  approaches  ~ as t - -  ~ .  Hox~'ever, 
the approach  is oscillatory, the frequency of  the equally spaced oscillations 
is [see (183a-c)] 

v 0 = (1/2~)tan-~[2/x(3` - -  Z-")~ ~/(1 --  2/z,'~)] (185) 

The system exhibits an oscillatory approach  to equil ibrium. This is a ra ther  
unusual phenomenon ;  it would mean,  for  example,  that  in the process of  the 
depolar izat ion of  a polarized beam of  particles, the value of the polarizat ion 
would change f rom positive to negative and oscillate with decreasing 
ampli tude and frequency given by (185) a round its equil ibrium vaitle. It is 
clear that  if any real significance can be at tr ibuted to this behavior,  the master  
equat ion description is totally inadequate.  It does not contain any oscillations 
at all. Presumably,  the stochastic dynamical  elements contained in the mas ter  
equat ion have averaged out the actual oscil latory character  inherent  in the 
system. 

It is interesting to observe how essential is the fact that  A --- 1. It is 
clear that  if 3, = 1, v 0 = 0; fur thermore ,  if 3, = 1, Eq. (182) reduces to the 
classical expressions. Physically, ,\ - '  1 means that the action of  an impuri ty  
(a marker )  on the spin states causes a spin eigenstate to go over in a super- 

posit ion of  eigenstates, not  a single one. I f  3, were equal to 1, the state of  the 
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system at an~ time x~o.uld be a tensor product of pure spin eigenstate~. The 
fact that A - I is what causes the mixing of the states. Since it is known that 
magnetic fields acting on spins do produce mixtures of eigenstates, it follows 
that the model rules correctiy describe the quantum situation. For example, 
such processes as magnetic depolarization should be described in this manner, 
It  further follows that the time evolution of such a process cmmot be described 
by a master equation. 

Remark. There does not seem to exist a simple process which produces 
t he  master result from the Liouville equation, Simple averaging, for example, 
does not eliminate the oscillations. The model rules do not determine the 
transition matrix S uniquely, but instead have a phase undetermined (see 
(63)d]. Thus it might appear that if one uses for S the'expression 

t( 1 _ ,t)1~ ei,A1 2 
S = \_e_t~Ax. = (1 - A) L'~-) (1~6) 

and averages the final observables over 7, the quan tum mechanical 
osci!iations would indeed disappear, a: This is a straightfor~ard calcuiatioi~ 
(patterned after Section 4.3); however, the oscillations do not disappear: 
the final answer is again (182). This is physically to be expected from the 
magnetic example. The phase in that example indicates the direction oi" the 
trajectory in the a-v plane. The magnetic field B is perpel{dicular to that line. 
If the line changes its orientation, so does B: but B lies alx~ays (for an" ?,1 
in the xy plane; hence it is a/ways in a plane perpendicular to the direction 
of the spin. The probability of  a spin flip produced by a feld in a plane 
perpendicular to the spin depends on the magnitude of the field, but not on 
the orientation of the field vector in that plane. Hence. all angles ;~ in S 
produce the same admixture of  spin eigenstates. Averaging over the angle y 
can then not have any effect. This is also shown b~ the explicit calculation. 

7.3. T h e  Two-Particle Distribution Functions 

The quantity calculated in this section is the probability that at time r, 
the spin at p is up and the spin at q is also up. This is a joint probability. The 
necessary formulas are (19), (32c), (56), (58b), (122), (137), (147), and (152). 

As before, it is only necessary to evaluate the constants from the initial 
data and substitute the values of the variables (in the classical case), or take 
the matrix elements (in the quantum case), It .should be mentioned that the 

a7 It is not uncommon that an averaging of quantum mechanical phases leads to a classical 
result. 
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coefficient~ b,,~ occur r ing  in (19) and  (32c) are by' virtue of  the initial 
cond i t ions  given by 

bq~ = 1/2", q,p  = 1 ..... n (187) 

The  results in the usual  no t a t i on  are 

F i,,(1, 1, t) = ~ -l-I .~(1 - -  2 y y  - -  :~(1 - -  2/z) 2' (188) 

qJT~.,,( , t, t ) ) ,  = ~ =- -.1_,(1 - -  2/z)' _ ](1 - -  2/x) 2~, t ~ p - -  q (I89) 

" I 2 / , ) - ~ ( ~ - %  - -  ( 1 9 0 )  L f T , , ( ,  1, t))~ = I + �89 - -  2/*)e + ~( I -  t > p  q 

F~.fl l ,  11 t) = 2~ -V- }(1 -- 2,\/~)' =- :~(1 - -  2?,/x) at (,191) 

" ~ , ?ft. ~ot . (192) x f ~ . v ( l , 1  t);> = : } +  }(1 - 2 A / x ) t - 7 } ( 1  - _  t,J-,  t , > p - q  

<f"(1 ,  l, t)5, = =} + -1(1 - -  2A/x) t 

} ( I  - 2 , ~ )  ~(,'-~' [ i  - 4 ~ A ( I  ,t)]', ,' '. .t L - ? - q 

1193> 
{1,1 X ( q , p , t ) j l , 1 ;  

= }Re[(1 - - / ,  =-t~A") 2~'-" (1 - / x  --',/zAa) t--~§ 

- -  (I  - - / x  ~- tzA"-) ''~ - 7  i 1 - y <-/xA e i e (~ ' -~  - -  ! I - - / ~  --  t~.l 2 i e~] 

(194) 
{1,1  p.,tq, p , t )  1 , 1  

= <1, 11 x I 1, 1) + <1 ] pl(q, t)[ 15(1 i PliP, t); 15 (195) 

~e(r/v' = 1, rlv' = 1; t) = ~ @- �89 - -  2a/X)' :}(1 - -  2,'~y)-" (I963 

These jo in t  probabil i t ies  show a great  deal  more  variety in behav ior  than  the 
single probabil i t ies .  Perhaps  m o r e  i m p o r t a n t  is the fact  tha t  the jo in t  p roba -  
bilities give much  more  detailed i n fo rma t ion  a b o u t  the system ,than do the 
single d is t r ibut ion funct ions.  The  master  equat ions ,  both  classical (188) 
a nd  q u a n t u m  mechanica l  (196), give, as a lways,  the o rd ina ry  m o n o t o n i c  
a p p r o a c h  to equi l ibr ium. The ag reemen t  be tween the classical Liouvil le 
equa t ion  and  the classical mas te r  equa t ion  holds  on ly  for  l imited t imes as 
t ~, p - - q  [see (189) and  (190)]. Par t i cu la r ly  n o t e w o r t h y  and  new is the 
existence of persistent corre la t ions  as t --+ co: 

( . f~ f l l ,  1, t)5r -+ ~ + I(1 - -  2b~) -~'~-q' 

One  would  expect  naively t h a t f  z app roaches  }. It is interest ing that  the intro-  
duc t ion  o f  a classical s tochas t ic  e lement  leads to Eq. (193) for f~,  x~hich, 

a8 It is interesting to n o t e  t h a t  these times of agreement get longer as the spins involved 
are farther apart. 
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although distinct l'rom F-', has at least the good taste to go to equilibrium ab 
t - ,  so. Apparently the continued operation of the stochastic dynamics 
destroys the correlations. The quantum expression shows oscillations, as 
before; however, there are persistent correlations as well. Because of the 
presence of two different terms, (1 - - / ,  § p,A"-) and (1 --/J, _/zA~), the time 
development of <1, 1, IX{ 1, 1) contains two distinct frequencies. The 
detailed analysis of Eq. (194) shows that there are beat frequencies as well. 
Both terms mentioned are less than one; this allows the long-time limit to be 
obtained rather easily, One finds 

lim (1 ,  1 i po(q,p, t){ 1, t )  = ~ 4- ][1 - -  4A/x(1 - - / x ) ]  v- '  (197) 
t - ,  w. " 

This is the remaining persistent correlation. In the case ,l = .1 .  Eq. (197) 
reduces to the classical result given in (190). Even so, it is somewhat surprising 
that the introduction of a classical stochastic element such as A eliminates the 
persistent correlation giving f 2 a reasonable asymptotic behavior, while the 
quantum mechanical problem with A ~ 1 still has a persistent correlation. 
This may seem strange in view of the comments made in connection with the 
classical case: The persistent correlations are destroy'ed by the continued 
operation of a stochastic element, as (193) shows explicitly. The explanation, 
which contains the essence of the difference between the classical and quantum 
descriptions, lies in the fact that in the quantum model with ,t =- 1. the 
dynamics as such does not contain any stochastic elements. There is a well- 
defined Hamiltonian and A is determined by the system. In the magnetic" 

' a ( 7  example, A is determined by the field: 3, = sm'(~rB). The interaction is given 
and fixed. The problem is an .ordinary quantum mechanical problem. 
where probability notions enter solely through the interpretation of the state 
vector: the dynamics does not contain probability aspects. This system 
described on the Liouville level leads to persistent correlations, as Eq. (197) 
shows. This is to be contrasted with the classical (A = t) case. ~here the 
interaction contains the stochastic features; the states do not have any 
probability aspects. It is understandable that such a system would not possess 
an},' persistent correlations. Summarizing. one can say that probabilistic 
elements in the dynamics lead to the destruction of persistent correlation" 
pure dynamics in either the quantum or classical domain can lead to situations 
in which correlations persist for all time. 

8. F I N A L  R E M A R K S  

(a) The most striking phenomena exhibited by these models are (1) the 
occurrence of" persistence correlation, and (2) an oscillatory approach to 
equilibrium, 
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The first-mentioned behavior means in particular that these systems, in 
their time behavior, do not approach the "'obvious'" thermodynamic 
equilibrium state as t ~ ~ .  The time limit does exist, but the state reached 
in time has rather unexpected and unintuitive properties [Eq. 097)]. 

The second type of behavior is perhaps a little less strange, but even so, 
the monotonic approach to equilibrium is often taken for granted. In fact, 
any discussion in which a relaxation time is assumed to exist presupposes 
this monotonic approach. Thus any system which does not exhibit the 
monotonic approach is worth investigating in detail. 

Both behaviors 1 and 2 are incompatible with a master equation 
description. The models therefore provide specific examples of systems whose 
time behavior cannot be described and not even approximated by a master 
equation. 

As in any study of models, there is always the nagging concern that the 
unusual phenomena studied are features of the special and contrived model 
and have no validity or significance beyond the confines Of this artificial 
model. Stated less generously, the model is bad. For this reason, it would be 
extremet 3 interesting if neutron depolarization experiments (or related spi~l 
echo experiments) could actually show examples of the osciliarory approach to; 
equiIibrium. It is believed that this oscillatory approach can and does occur 
in a variety of circumstances, but a precise characterization of a system 
exhibiting this behavior is still lacking. 

(b) Several. modifications and exten'sions of the models are possible: 
some may be useful. One could introduce a location-dependent interaction 
(as was done in Section 3): k~ ----- '~o ,-}- g~ �9 Considering g~ as a perturbing 
external field allows both an exact and an approximate calculation to be 
performed. In this manner, one can-- for  these models, in any case--obtain 
a check on the validity of the Kubo formula. It would also b e very interesting 
to construct a model in which the dependence on the density is less trivial. 
than the dependence-on/z in the ones considered. There are sevm:al ways of 
doing this; one could consider a model where the probabili'ty of a spin change 
would depend on the spin state of the neighbors. This would at the same time 
introduce interactions, a more complicated density dependence, and would 
yield a nonlinear model. Some of these models are still soluble. 

(c) A variety of other modifications are possible. Instead of dealing with 
particles of spin ~, one could consider particles of spin a. The appropriate 
values of the ( variables then would be the 2S _c 1 roots of unity. One can also 
alter the model rules so that the resulting system simulates a hysteresis-type 
behavior. Many other possibilities are open, 

(d) The final utility of models is of course determined by the insight and 
knowledge they provide about realistic systems. One interesting possibility 
which is under active study is to see whether one can set Up inequalities or 
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�9 'compariso~ theorems "" which relate real systems and modds.  An example ::'' 
would be a result showing that the susceptibility ol" a real three-dimensional 
system (with interactions between the constituents specified by a potential V) 
is always larger then, say, the product of  the susceptibilities of three one- 
dimensional chains, each with a constant interaction given by the maximum 
of V. Thus the purpose would be to bound the physical characteristics of  
realistic systems (which of course cannot be computed) by those of models 
(which can be computed). If this program can ever be carried out. the models 
constructed here might give useful insights into the nonequilibrium behavior 
of  quantum systems, 

(e) This model differs from other exactly soluble models in several 
respects: (I) The model possesses both classical and quantum mechanical 
versions. (2) The master and Liouville equations can both be exactly solved. 
(3) Comparisons can be explicitly carried out between Classical models ~ith 
explicit stochastic elements and quantum systems. 

Models investigated by other authors demonstrate some. but generalI) 
not all, of these features. 

For example, Barouch et al. ~u~ solve the-kiouxille equation for the ? ( )  
model in a homogeneous, time-dependen~ magnetic field. I~ \'. as iotmd i~ the 
thermodynamic !imit that the limit of the magnetization as t --, m is finite: 
but the system does not approach a thermal equilibrium state. The maste: 
equation ',,.as not studied for .this model. Abraham e~ al.'""' >tr tl',e .',.} 
model xxinere for r 0. the system is in thermal equiiib,-i:'m witl~ a magnetic 
field acting op, just a single spin. The magnetic field ,., ~o,,~ l~. ,, , .... -:nd t~;c 
time evolution of the system is determined via the Lionville equation. Ti:e 
magnetization of the system now relaxes to its new equilibrium. 

The first demonstration of the oscillatory approach to equilibrium for 
this model was given by Dresden. (e~ Oscillatory beha',ior in zl',e thl~,c 
evolution of spin systems was found by Walgraef and Borehmans5 '2~ These 
authors used a weak coupling expansion of the Li.,-,,.l.e CC!Lmti~,~l. b~>il-,g 
their considerations on the Prigogine t'ormalism. <, 

The systen~ described here is (as the rnagnetic example sueeests} cioxe], 
related to the behavior of a two-level atom in an externai iield. Ti~e Lio~r, ille 
equation for this case was discussed by Muriet. ~a~ 

The relationship and validity of the master equation is of special interest 
in the study' of spontaneous emission of N two-level atoms (which itself is 
useful for the description of lasers). A master-type equation was employed 
for this purpose by Agarwal. ('~1 Since the system described is a good deal 
more complex than that described here, the Liouville equation ~as not 
investigated. It would be interesting to see ~hether the techniques oi" this 

39 This is a pretty crazy example.  
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p a p e r  cou ld  be used to h a n d l e  a m o r e  real ist ic  and  the re fore  move hl tcrc~t ing 

phys ica l  s i tua t ion .  T h e  l imi ts  o f  the  va l id i ty  o f  the mas t e r  e q u a t i o n  de sc r ip t i on  

o f  lasers wou ld  be pa r t i cu l a r ly  useful~ 
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